

COMPUTER ORGANISATION

Computer Level Hierarchy

Program Execution

Translation: The entire high level program is translated into an
equivalent machine language program. Then the machine language
program is executed.program is executed.

Interpretation: Another program reads the high level programInterpretation: Another program reads the high level program
instructions one-by-one and executes a equivalent series of
machine language instructions.

Program translation uses a collection of tools to perform the translation:

� Compiler: Translates high level language programs into a lower level
language often called object code.

� Assembler: Translates assembly language instructions into object code.

� Linker: Combines collections of object code into a single executable
machine language program.

Computer System: Layers of AbstractionComputer System: Layers of Abstraction

Application ProgramApplication Program

Algorithms

Software

Hardware

Language

I t ti S t A hit tInstruction Set Architecture
(and I/O Interfaces)

MicroarchitectureMicroarchitecture

Circuits

Devices

From Theory to PracticeFrom Theory to Practice
In theory, computer can compute anything
that’s possible to compute

• given enough memory and time

In practice, solving problems involves
ti d t i tcomputing under constraints.

• time
weather forecast next frame of animationweather forecast, next frame of animation, ...

• cost
 cell phone, automotive engine controller, ...

• power
 cell phone, handheld video game, ...

Transformations Between Layers
How do we solve a problem using a computer?
A systematic sequence of transformations between
layers of abstraction.layers of abstraction.

Problem

Al ith

Software Design:
choose algorithms and data structures

Algorithm

Programming:
use language to express design

Program

g g p g

Compiling/Interpreting:

Instr Set
A hit t

Compiling/Interpreting:
convert language to
machine instructions

Architecture

Deeper and DeeperDeeper and Deeper…

I t S tInstr Set
Architecture

Processor Design:

Microarch

choose structures to implement ISA

Logic/Circuit Design:Logic/Circuit Design:
gates and low-level circuits to
implement components

Circuits

Process Engineering & Fabrication:
develop and manufacture

Devices

develop and manufacture
lowest-level components

Descriptions of Each LevelDescriptions of Each Level

Problem StatementProblem Statement
• stated using "natural language"
• may be ambiguous imprecisemay be ambiguous, imprecise

Algorithm
• step-by-step procedure, guaranteed to finishp y p p , g
• definiteness, effective computability, finiteness

Program
• express the algorithm using a computer language
• high-level language, low-level language

Instruction Set Architecture (ISA)
• specifies the set of instructions the computer can perform

data types addressing mode• data types, addressing mode

Descriptions of Each Level (cont)Descriptions of Each Level (cont.)

MicroarchitectureMicroarchitecture
• detailed organization of a processor implementation
• different implementations of a single ISAdifferent implementations of a single ISA

Logic Circuits
• combine basic operations to realize microarchitecturep
• many different ways to implement a single function

(e.g., addition)
D iDevices

• properties of materials, manufacturability

Many Choices at Each LevelMany Choices at Each Level
Solve a system of equations

Gaussian
elimination

Jacobi
iterationRed-black SOR Multigridelimination iteration g

FORTRAN C C++ Java Tradeoffs:

Intel x86Sun SPARC Compaq Alpha

cost
performance
power

Pentium II Pentium III AMD Athlon

(etc.)

Ripple-carry adder Carry-lookahead adder

CMOS Bipolar GaAs

What’s Next
Bits and Bytes

• How do we represent information using electrical signals?• How do we represent information using electrical signals?
Digital Logic

• How do we build circuits to process information?How do we build circuits to process information?
Processor and Instruction Set

• How do we build a processor out of logic elements?p g
• What operations (instructions) will we implement?

Assembly Language Programming
• How do we use processor instructions to implement

algorithms?
• How do we write modular reusable code? (subroutines)• How do we write modular, reusable code? (subroutines)

I/O, Traps, and Interrupts
• How does processor communicate with outside world?How does processor communicate with outside world?

Structure and Function of a COMPUTER SYSTEM:

i l l iA computer is a complex system; For analysis,
understanding and design - Identify the
hierarchical nature of most complex system hierarchical nature of most complex system.

A hierarchical system is a set of interrelated y
subsystems, each in turn, hierarchical in structure;
until at the lowest level we have elementary

b tsubsystems.

The hierarchical nature of complex systems is The hierarchical nature of complex systems is
essential to both their design and their description.
The designer need only deal with a particular level g y p
of the system at a time.

At h l l th t i t f t f At each level, the system consists of a set of
components and their interrelationships.

The behavior at each level depends only
on a simplified, abstracted characterization of
the system at the next lower level.

At each level, the designer is concerned , g
with structure and function:

h i hi h hStructure: The way in which the components are
interrelated.

Function: The operation of each individual
component as part of the structure. p p

Central Processing Unit (CPU) based CO

The organization of a simple computer with
one CPU and two I/O devices

There are four main functions of a computer:

i• Data processing
• Data storage
• Data movement • Data movement
• Control

MAIN STRUCTURAL BLOCKS/PARTS:

C t l P i U it (CPU) C t l th ti f Central Processing Unit (CPU): Controls the operation of
the computer and performs its data processing functions.
Often simply referred to as processor.

Main Memory: Stores data.

I/O: Moves data between the computer and its external
environment.

System Interconnection: e.g. BUS for communication
among CPU, main memory, and I/O.

The major structural components of a CPU are:j p

Control Unit (CU): Controls the operation of the
C d h hCPU and hence the computer.

Arithmetic and Logic Unit (ALU): Performs Arithmetic and Logic Unit (ALU): Performs
computer’s data processing functions.

Register: Provides storage internal to the CPU.

CPU I i i i h CPU Interconnection: communication among the
control unit, ALU, and register.

Structure Top LevelStructure - Top Level

Peripherals Computer

Main
M

Peripherals

Central
Processing

Computer

Computer

Memory

Systems

Processing
Unit

Systems
Interconnection

Input
Output

Communication
lilines

Structure The CPUStructure - The CPU

Computer Arithmetic
andRegisters and
Logic Unit

Internal CPU

g

CPU

I/O

System
Bus Internal CPU

InterconnectionMemory

CPU
Control
Unit

CPU

Structure The Control UnitStructure - The Control Unit

CPU
Sequencing

Control Unit

Registers and

q g
Logic

Control
Unit

ALU

Internal
Bus Registers and

Decoders
Of CU

Registers

Control
Memory

• The First Generation: Vacuum Tube Computers
(1945 1953)(1945 - 1953)

– Atanasoff Berry Computer (1937 - 1938) y p ()
solved systems of linear equations.

– John Atanasoff and Clifford Berry of y
Iowa State University.

– Electronic Numerical Integrator and Computer Computer
(ENIAC) b J h M hl d J P E k h U i i(ENIAC) by John Mauchly and J. Presper Eckertat the University
of Pennsylvania, 1946

– The IBM 650 first mass-produced computer. (1955). It was
phased out in 1969.p

• The Second Generation: Transistorized
Computers (1954 - 1965)p ()

– IBM 7094 (scientific) and 1401 (business)
– Digital Equipment Corporation (DEC) PDP-1Digital Equipment Corporation (DEC) PDP 1
– Univac 1100

Control Data Corporation 1604– Control Data Corporation 1604.
– . . . and many others.

The Third Generation: Integrated Circuit Computers (1965• The Third Generation: Integrated Circuit Computers (1965
- 1980)
– IBM 360– IBM 360
– DEC PDP-8 and PDP-11
– Cray-1 supercomputery p p

• IBM had gained overwhelming dominance in the industry.
– Computer manufacturers of this era were characterized as IBMComputer manufacturers of this era were characterized as IBM

and the BUNCH (Burroughs, Unisys, NCR, Control Data, and
Honeywell).

The von Neumann Model

• The invention of stored program computers• The invention of stored program computers
has been ascribed to a mathematician, John

N h t fvon Neumann, who was a contemporary of
Mauchley and Eckert.

St d t h b• Stored-program computers have become
known as von Neumann Architecture
systems.

The von Neumann Model

• Today’s stored-program computers have theToday s stored program computers have the
following characteristics:
– Three hardware systems: y

• A central processing unit (CPU)
• A main memory system

A I/O• An I/O system

The capacity to carry out sequential instructionThe capacity to carry out sequential instruction
processing.

A single data path between the CPU and main g p
memory.

This single path is known as the von Neumann
b ttl kbottleneck.

IAS (P i t) t d l b V N ’IAS (Princeton) computer model by Von Neumann’s group.

IAS computer consists of:IAS computer consists of:

- A main memory which stores both data and instructions - A main memory, which stores both data and instructions.

An arithmetic logical unit (ALU) capable of operating on - An arithmetic-logical unit (ALU) capable of operating on
binary data.

- A control unit, which interprets the instructions in memory
and causes them to be executed.

- Input and output (I/O) equipment operated by the p p (/) q p p y
control unit.

CPU Organization

The data path of a typical Von Neumann machineThe data path of a typical Von Neumann machine.

The von Neumann Model

• This is a general
depiction of a von
Ne mann s stemNeumann system:

• These computers p
employ a fetch-
decode-execute
cycle to runcycle to run
programs as
follows . . .

The von Neumann Model

Th t l it f t h th t i t ti f• The control unit fetches the next instruction from
memory using the program counter to determine where
the instruction is located.

The von Neumann Model

Th i t ti i d d d i t l th t th ALU• The instruction is decoded into a language that the ALU
can understand.

The von Neumann Model

A d t d i d t t th i t ti• Any data operands required to execute the instruction
are fetched from memory and placed into registers
within the CPU.

The von Neumann Model

Th ALU t th i t ti d l lt i• The ALU executes the instruction and places results in
registers or memory.

IAS – Von Neumann (1952+)
• 1024 x 40 bit words (= 5KB memory)

– Binary number (2’s complement)– Binary number (2 s complement)
– 2 x 20 bit instructions

• Set of registers (storage in CPU)
– Memory Buffer Registery g
– Memory Address Register

Instruction Register
Addition time was 62

– Instruction Register
– Instruction Buffer Register

microseconds and
the multiplication time
was 713 microseconds.

– Program Counter
– Accumulator

It was an asynchronous
machine.

– Multiplier Quotient
machine.

Structure of IAS
Arithmetic and Logic Unit

Central Processing Unit

A ith ti & L i Ci it

MQAccumulator

Input MBR

Arithmetic & Logic Circuits

Main
Memory

Input
Output
Equipment

Instructions
& Data

MAR
Control

IBR

IR

PC

Program Control

Control
Circuits

IR

Address
g

Unit

MQ - Multiplier/Quotient

Non-von Neumann Models

• Conventional stored-program computers haveConventional stored program computers have
undergone many incremental improvements over
the years.

• These improvements include adding specialized
buses floating-point units and cache memoriesbuses, floating point units, and cache memories,
to name only a few.

B i i i l• But enormous improvements in computational
power require departure from the classic von
Neumann architectureNeumann architecture.

• Adding processors is one approach.

DEC PDP 8 Bus StructureDEC - PDP-8 Bus Structure

Console Main I/O I/OConsole
Controller CPU

Main
Memory

I/O
Module

I/O
Module

OMNIBUS

The Omnibus - a backplane of undedicated slots;

Summary of hardware complexity

Vacuum tube - 1946-1957 ; Transistor - 1958-1964

Small scale integration: 1965 ; Up to 100 devices on a chip

Medium scale integration: -1971; 100-3,000 devices on a chip

Large scale integration :1971-1977; 3,000 - 100,000 devices on a chip

Very large scale integration: 1978 -1991; 100,000 - 100,000,000 devices on a chip

Ultra large scale integration : 1990s; Over 100 000 000 devices on a chipUltra large scale integration : 1990s; Over 100,000,000 devices on a chip

Multi-core Architectures 2000s ; Over 10^9 devices on a chipMulti core Architectures 2000s ; Over 10 9 devices on a chip

Architecture vs. Organization

Often used interchangeably in book titles and as keywordsOften used interchangeably – in book titles and as keywords.

Thin line of difference – should be clear as we progress through Thin line of difference – should be clear as we progress through
the course material.

An instruction set is a list of all the instructions,
that a processor can execute.

Typical Categories of Instructions:

• Arithmetic - add, subtract
• Logic - and, or and not

Data move input output load and store • Data - move, input, output, load and store
• Control flow - goto, if ... goto, call and return.

An instruction set, or instruction set
architecture (ISA), is the part of the computer
architecture related to programming, including the
native data types, instructions, registers,
addressing modes memory architecture interrupt addressing modes, memory architecture, interrupt
and exception handling, and external I/O; also
includes a specification of the set of opcodes includes a specification of the set of opcodes
(machine language) - the native commands for a
particular processor.

Computer System: Layers of AbstractionComputer System: Layers of Abstraction

Application ProgramApplication Program

Algorithms

Software

Hardware

Language

I t ti S t A hit tInstruction Set Architecture
(and I/O Interfaces)

MicroarchitectureMicroarchitecture

Circuits

Devices

Computer Architecture

Logical aspects of system implementation asLogical aspects of system implementation as
seen by the programmer; such as, instruction sets
(ISA) and formats, opcode, data types, addressing
modes and I/O.

Instruction set architecture (ISA) is different Instruction set architecture (ISA) is different
from “microarchitecture”, which consist of various
processor design techniques used to implement p ocesso des g tec ques used to p e e t
the instruction set.

Computers with different microarchitectures
can share a common instruction set.

For example, the Intel Pentium and the AMD
Athlon implement nearly identical versions of the p y
x86 instruction set, but have radically different
internal designs.

Computer architecture is the conceptual design
and fundamental operational structure of a computer
system It is a functional description of requirements system. It is a functional description of requirements
and design implementations for the various parts of a
computer.p

It is the science and art of selecting and
interconnecting hardware components to create g p
computers that meet functional, performance and cost
goals.

It deals with the architectural attributes like
physical address memory, CPU and how they should be
designed and made to coordinate with each other designed and made to coordinate with each other
keeping the goals in mind.

l “b ildi h d i d hi fAnalogy: “building the design and architecture of
house” – architecture may take more time due to
planning and then organization is building house by planning and then organization is building house by
bricks or by latest technology keeping the basic layout
and architecture of house in mind.

Computer architecture comes before
computer organizationcomputer organization.

Computer organization (CO) is how
operational attributes are linked together and

t ib t t li th hit t l contribute to realise the architectural
specifications.

CO encompasses all physical aspects of
computer systems

e.g. Circuit design, control signals, memory types.

Microarchitecture, also known as
Computer organization is a lower level, more
concrete and detailed, description of the system
that involves how the constituent parts of the

t i t t d d h th system are interconnected and how they
interoperate in order to implement the ISA.

The size of a computer's cache, for example, is
an organizational issue that generally has nothing
to do with the ISA.

Another example: it is an architectural design
issue whether a computer will have a multiplyissue whether a computer will have a multiply
instruction. It is an organizational issue whether
that instruction will be implemented by a special
multiply unit or by a mechanism that makes
repeated use of the add unit of the system.

Instruction Set Architecture (ISA) -
The Hardware-Software Interface

 The most important abstraction of computer design

Application ProgramsApplication

Software

Application Programs

Operating System

pp

Processor I/O System

Compiler Instruction Set Architecture
Interface between SW & HW

Logic - gates, state machines, etc.

Circuit - transistors, etc.
Hardware

Layout - mask patterns, etc.

Important Building BlocksImportant Building Blocks

 Microprocessor

 Memory

 Mass Storage (Disk)

 Network Interface Network Interface

Typical Motherboard (Pentium III)
S BridgeFloppy ConnPower Conn S. Bridge

IDE Disk Conn.
BIOS ROM

Floppy Conn.Power Conn.

Memory

Processor
AGP

N. Bridge

PCI Cards

Rear Panel Conn.

AGP - Accelerated Graphics Port;
PCI - Peripheral Component Interconnect;p p ;
IDE – Integrated Drive Electronics;
BIOS - Basic input/output system

Why design issues matter:

- Cannot assume infinite speed and memory.

- Speed mismatch between memory and processor

h dl b d (b d i t fl t)- handle bugs and errors (bad pointers, overflow etc.)

- multiple processors, processes, threads

- shared memory

- disk access

- better performance with reduced powerbetter performance with reduced power

-

Enhancing Performance
(speed)

• Pipelining
• On board cacheOn board cache
• On board L1 & L2 cache

• Branch prediction• Branch prediction
• Data flow analysis (in compilers)
• Speculative execution

DRAM and Processor
Characteristics

Typical I/O Device Data RatesTypical I/O Device Data Rates

Performance Analysis

SN *A basic performance equation:
R

SNT *


T – processor time required to execute a program (not total time used);T processor time required to execute a program (not total time used);

N - Actual number of machine instructions (including that due to loops);

S – Average No. of clock cycles/instruction;

R – Cycle/sec Earlier measures –y Earlier measures

MIPS (Millions of Instructions per sec.)

MFLOPS – Million floating point operations per sec.

CPI – Cycles per Instruction;y p ;

IPC – Instructions per cycle = 1/CPI;

Speedup = (Earlier execution time) / (Current execution time);

The Unix “time <a.out>” command gives:

“User CPU” time; “system (kernel) CPU” time and the “elapsed” real-time.

e.g. A: 0.327u 0.010s 0:01.15; %-age elapsed time in CPU: g g p

%45.0
75

01.0327.0



75

e.g. B: 90.7u 12.9s 0:12.39; %-age elapsed time in CPU: g ; g p

%65
159

9.127.90



A better situation, for exploitation 159of CPU time.

CPU ti ti fCPU execution time for a program =

timecycleclock*cyclesclockCPUcyclesclock CPU
 timecycleclock cyclesclock CPU

rateClock

CPU execution time “for a program” =

till k*ll kCPUcyclesclock CPU timecycleclock *cyclesclock CPU
rateClock

y


CPU clock cycles = No. of instructions * Avg. clock cycles/instruction


n

iN iCPI*cyclesclock CPU
i 1

CPI = cycles/instruction; N – No. of instructions;

°CPU execution time for program
= Instruction Count x CPI x Clock Cycle Time

A better measure:
)(
)(_

BTiE
ATimeExec


n

iTimetimeExec 1_

= Instruction Count x CPI x Clock Cycle Time

)(_ BTimeExec 
i

in 1

dll kI t tid
cycle

seconds*cycle*sec
clocknInstructio

clock
program

nsInstructio
program

onds


Performance - SPECS

CPU• CPU

• Graphics/Workstations

• MPI/OMP

SPEC MPI2007 focuses on performance
of compute intensive applications using
the Message-Passing Interface (MPI), • MPI/OMP

(Orthogonal Multi-Processor)

• Java Client/Server

which means these benchmarks
emphasize the performance of:

• Java Client/Server

• Mail Servers

• Network File System

• computer processor (CPU),
• number of computer processors,
• MPI Library,

i ti i t t Network File System

• Power

• SIP

• communication interconnect,
• memory architecture,
• compilers, and
• shared file system

(Session Initiation Protocol)

• SOA

• shared file system.

Not for Graphics, O/S and I/O.

(Service Oriented Architecture)

• Virtualization

• Web Servers

MPI2007 is SPEC's benchmark suite for evaluating MPI-parallel,
floating point, compute intensive performance across a wide range of cluster g p , p p g
and SMP (Symmetric multi-processing) hardware.

CFP2006 is used for measuring and comparing compute-intensive

SPEC rating (ratio) = TR / TC;

g p g p
floating point performance.

SPEC rating (ratio) = TR / TC;

TR = Running time of the Reference Computer;

TC = Running time of the Computer under test;

/1 nn

iSPECSPEC
/1









  Higher the SPEC score,

better the performancei 1  

n – No. of programs in the SPEC Suite.

better the performance.

Benchmark Language Application Area
104.milc C Quantum Chromodynamics

107.leslie3d Fortran Computational Fluid Dynamics CFD

113.GemsFDTD Fortran Computational Electromagnetics

115.fds4 C/Fortran CFD: Fire dynamics simulator

121 pop2 C/Fortran Climate Modeling121.pop2 C/Fortran Climate Modeling

122.tachyon C Graphics: Ray Tracing

126.lammps C++ Molecular Dynamics

127.wrf2 C/Fortran Weather Forecasting

128.GAPgeofem C/Fortran Heat Transfer using FEM

129 tera tf Fortran 3D Eulerian Hydrodynamics129.tera_tf Fortran 3D Eulerian Hydrodynamics

130.socorro C/Fortran Molecular Dynamics

132.zeusmp2 C/Fortran Computational Astrophysics

137.lu Fortran Implicit CFD

From first to fifth/sixth generation systems, the following factors were
l t k i t id ti t i th falso taken into consideration, to improve the performance.

- Reduced Power dissipation

- Reduced Space Area

- More increase in Speed and Registers (GPRs) for operation- More increase in Speed and Registers (GPRs) for operation

- More memory size

- Use of Cache

- Set of cores on CPU

- pipelining and special MMX hardware.

-

Increase in CPU performance, may come from three factors:p , y

• Increase in clock rate

• Improvement in processor design to lower CPI

• Compiler enhancements for lower average CPI

• Better memory organization

•

Key terminologies:
• Control Path

• Microcontroller • ALU, FPU, GPU etc.

• CPU design

• Hardware description language

• Pipelining

• Cache

• Von-Neumann architecture

M lti (ti)

• Superscalar

• Out of order execution• Multi-core (computing)

• Datapath

• Out-of-order execution

• Register renaming

• Dataflow architecture

• Stream processing

• multi-threading

• RISC, CISC• Stream processing

• Instruction-level parallelism (ILP)

RISC, CISC

• Addressing Modes

• Vector processor • Instruction set

• SIMD, MIMD

• Flynn’s taxonomy

• MMX instructionsMMX instructions

•

