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Fundamental Steps in DIP

Outputs of these steps are generally images
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Light and EM Spectrum

Energy of one photon (electron volts)
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Light and EM Spectrum

The colors that humans perceive in an object are

determined by the nature of the light reflected
from the object.

e.g. green objects reflect light with wavelengths primarily
in the 500 to 570 nm range while absorbing most of the
energy at other wavelength



Light and EM Spectrum

Monochromatic light: void of color
Intensity is the only attribute, from black to white

Monochromatic images are referred to as gray-scale
images

Chromatic light bands: 0.43 to 0.79 um

The quality of a chromatic light source:

Radiance: total amount of energy

Luminance (Im): the amount of energy an observer perceives
from a light source

Brightness: a subjective descriptor of light perception that is

impossible to measure. It embodies the achromatic notion of intensity
and one of the key factors in describing color sensation.



Image Acquisition
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Image Acquisition Using a Single Sensor
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Image Acquisition Using Sensor Strips

One image line out per
increment of lincar motion

Imaged area

Image
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Cross-sectional images

Linear motion of 3-D object

Sensor strip
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FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.



Image Acquisition Process
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FIGURE 2.15 Anexample of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An el-
ement of a scene. (¢) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.



A Simple Image Formation Model

fGy) =ilx,y) xr(x,y)

f(x,v): mtensity at the point (x, y)

i(x, y): 1llunmination at the point (x, )

(the amount of source 1llumination mncident on the scene)
r(x,y): reflectance/transmissivity at the pont (x, )

(the amount of 1llumination reflected/transmitted by the object)

where 0 <i(x,y) <o and 0 <r(x,y) <l
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Some Typical Ranges of illumination

Illumination
Lumen — A unit of light flow or luminous flux
Lumen per square meter (Im/m2) — The metric unit of measure for illuminance of a surface

= On a clear day, the sun may produce in excess of 90,000 Im/m? of illumination on the surface of the
Earth

= On a cloudy day, the sun may produce less than 10,000 Im/m? of illumination on the surface of the
Earth

= On a clear evening, the moon yields about 0.1 Im/m? of illumination

= The typical illumination level in a commercial office is about 1000 Im/m?
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Some Typical Ranges of Reflectance

Reflectance

= (0.01 for black velvet

0.65 for stainless steel

0.80 for flat-white wall paint

0.90 for silver-plated metal

= 0.93 for snow
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Image Sampling and Quantization

ab
cd

FIGURE 2.16
Generating a
digital image.

(a) Continuous
image. (b) A scan
line from A to B
in the continuous
image, used to
illustrate the
concepts of
sampling and
quantization.

(c) Sampling and
quantization.

(d) Digital
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Image Sampling and Quantization

ab

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization.
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Representing Digital Images
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FIGURE 2.18

(a) Image plotted
as a surface.

(b) Image
displayed as a
visual intensity
array.

(c) Image shown
asa2-D
numerical array
(0,.5,and 1
represent black,
gray, and white,
respectively).
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Representing Digital Images

The representation of an MxN numerical array as

f (0,0) £(0,1) .. f(ON=1) °

f (0 f (1,1 f(Q,N-1
foyo| 1RO faD LN-D

(M-10) f(M-1) .. f(M-LN-1)



Representing Digital Images

The representation of an MxN numerical array as

8y, 8y .. Aoy
8, Ay .. Ayng

Av_10 Avar 0 Bvgnet



Representing Digital Images

The representation of an MxN numerical array in MATLAB

Cf(L) f(L2) .. f@N) -

f(2,1 f(2,2) .. f(2,N
fopo| T@D 1@ @)

(MD) FM.2) . F(MN)



Representing Digital Images

Discrete intensity interval [0, L-1], L=2k

The number b of bits required to store a M x N digitized image

b=MxN x k
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Representing Digital Images

TABLE 2.1

Number of storage bits for various values of N and k.
LS alTn = ) 2(L=4) 3L =8 4(L=16) 5L =32) 6(L=064) T(L =128) 8 (L = 256)
32 1,024 2,048 3,072 4,096 5.120 6.144 7,168 8,192
64 4,096 8,192 12,258 16.354 20,450 24576 28,672 32,768
128 16,3584 32,768 49,152 63.336 w1.920 08304 114,688 131,072
256 63,336 131.072 196,608 262.144 327.680 393216 458,752 5242885
512 262,144 524,288 186,432 1.048.576 1.310,720 1.572.864 1,835,008 2,087,152
1024 1,048,576 2007152 3,145,728 4.194.304 5.242 850 6.291.456 7,340,032 8,388,608
2045 4,194,304 8,388,608  12,582912 16777216 20971520 25165824 20369128 33,554 432
4096 16,777,216 33554432 503316458  67.108.864  B3.586.050 100663296 117440512 134,217,728
8192 67,108,564 134217728 201,326,592 268435456 335544320 402653184 469.762,045 536,870,912
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Geometric Spatial Transformations

Geometric transformation (rubber-sheet transformation)
— A spatial transformation of coordinates

(X, y) =TV, W)}

— intensity interpolation that assigns intensity values to the spatially
transformed pixels.

Affine transform

Ix y 1=[v w 1], t,




TABLE 2.2
Affine transformations based on Eq. (2.6.-23).

Transformation . . Coordinate
Name Affine Matrix, T Equations Example
Identity 1 0 0 xX=wv
y=w Pﬂl’
0 1 1
x
Scaling ¢ 0 0 X =GP
Cy y=cw
0
. r
Rotation cosf sind O x =wcosf —wsin b
—sin® cos@ 0O y=wcosf + wsind z;>
0 0 1
r
Translation 1 0 X=v+1
0 1 y=w+1
[
Shear (vertical) 1 0 O] x =v+ 5,0
5, 1 0 y=w
|0 0 1]
Shear (horizontal) 1 s, O] x=w
0 1 0 V=50 + w ?
0 1 i
= - r




Intensity Assignment

Forward Mapping

(X, y) =TL(v,W)}

It's possible that two or more pixels can be transformed to the same
location in the output image.

Inverse Mapping
(v,w) =T {(x, y)}

The nearest input pixels to determine the intensity of the output pixel
value.

Inverse mappings are more efficient to implement than forward
mappings.



Example: Image Rotation and Intensity
Interpolation

.\_\.\.\ ‘\\\ '\-\_\.\.

abcd

FIGURE 2.36 (a) A 300 dpi image of the letter T. (b) Image rotated 21° clockwise using nearest neighbor
interpolation to assign intensity values to the spatially transformed pixels. (c) Image rotated 21° using
bilinear interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge
detail for the three interpolation approaches.



Image Registration

Input and output images are available but the
transformation function is unknown.

Goal: estimate the transformation function and use it to
register the two images.

One of the principal approaches for image registration is
to use tre points (also called control points)

» The corresponding points are known precisely in the input and
output (reference) images.



Image Registration

A simple model based on bilinear approximation:

(X =CV+C,W+CVW+C,

Y =C,V 4 CW+ C,VW+ G

Where (v,w) and (X, y) are the coordinates of
tie points in the input and reference Images.
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FIGURE 2.37
Image
registration.

(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
corners.

(c) Registered
image (note the
errors in the
borders).

(d) Difference
between (a) and
(c), showing more
registration
errors.



Image Transform

A particularly important class of 2-D linear transforms,
denoted T(u, v)

M-1N-1

T(u,v)=> > f(xy)r(xyuv)

x=0 y=0

where f (X, y) Is the input image,
r(x,y,u,v) is the forward transformation ker nel,
variables u and v are the transform variables,
u=0,1,2,..,M-1landv= 0,1, ..., N-1.



Image Transform

Given T(u, v), the original image f(x, y) can be recoverd
using the inverse tranformation of T(u, v).

Z

-1

Z

-1

T (u,v)s(x, y,u,v)

t(x,y)

where s(X, y,u,V) Is the inverse transformation Kker nel,
x=0,1,2,..,M-1landy = 0, 1, ..., N-1.

Il
o
O

V=
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Image Transform

T(u, v)

- R|T(u, v)] -

f(x, y) —{ Transform —— Opﬂll;?tlﬂﬂ - {?;Etﬁrm - g(x. y)
T e ) T
domain Transform domain domain

FIGURE 2.39

General approach
for operating in
the linear
transform
domain.
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Example: Image Denoising by Using DCT Transform

FIGURE 2.40

(a) Image corrupted
by sinusoidal
interference. (b)
Magnitude of the
Fourier transform
showing the bursts
of energy responsible
for the interference.
(c) Mask used to
eliminate the energy
bursts. (d) Result of
computing the
inverse of the
modified Fourier
transform. (Original

image courtesy of
NASA.)
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Forward Transform Kernel

M-1N-1

T(u,v)=> > f(xy)r(xy,u,v)

X= y:

The kernel r(x, y,u,v) Is said to be SEPERABLE if
r(X, y’ U’V) — rl(X! U)rz(y,V)

In addition, the kernel is said to be SYMMETRIC if
I, (x,u) Is functionally equal to r,(y, V), so that
r(X, y’ U,V) — rl(X! u)rl(y’ U)

13



The Kernels for 2-D Fourier Transform

The forward kernel
r(x,y,u,v)
Where j=+/-1

L e—j27z(ux/M +vy/N)

The Inverse kernel

1 .
S(X, Y, U,V) — ey
MN



2-D Fourier Transform

M -1 _
T (U,V) f (X, y)e—127z(uxll\/l +Vvy/N)
Xx=0 vy

Z
|_\

I
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Z

—-1N-1 _
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Probabilistic Methods

Letz, 1=0, 1, 2, ..., L-1, denote the values of all possible intensities
inan M x N digital image. The probability, p(z, ), of intensity level
Z, occurring in a given image Is estimated as
nk
Z,) = ——,
p(z,) v
where n, is the number of times that intensity z, occurs in the image.

L1
Z p(zk) =1
k=0

The mean (average) intensity is given by

L1
m = Z Z, p(z,)
k=0

16



Probabilistic Methods

The variance of the intensities Is given by

o’ = Z(Zk _m)2 p(z,)

The n™ moment of the intensity variable z is

0,(2) = 3 (2, -m)" p(z,)

17



Example: Comparison of Standard Deviation
Values

o=14.3 o =316 o=49.2
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Image Sharpening Using Frequency Domain
Filters

A highpass filter is obtained from a given lowpass filter
using

HHP(U’V) =1- HLP(U1V)

A 2-D ideal highpass filter (IHPL) is defined as

= |0 1fD(u,v) <D,
(“’V)_{l if D(u,v) > D,



Image Sharpening Using Frequency Domain
Filters

A 2-D Butterworth highpass filter (BHPL) is defined as
1

1+[D, / D(u, V)"

H(u,v) =

A 2-D Gaussian highpass filter (GHPL) is defined as

H (u’ V) —1_ e—DZ(u,v)/zDg
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



The Spatial Representation of Highpass
Filters

/N N\

I ] V

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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Filtering Results by IHPF

abc
FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.



Filtering Results by BHPF

albic

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an IHPE.



Filtering Results by GHPF

abc

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.



Using Highpass Filtering and Threshold for
Image Enhancement

BHPF \ .......
(order 4 with a cutoff
frequency 50)
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FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards

and Technology.)



The Laplacian in the Frequency Domain

H(u,v) =—47°(u® +Vv?)

H(u,v) =—47°| (U-P/2)’ +(v-Q/2)") |
=—-47°D*(u,V)

The Laplacian image

VAE(x,y) =37 {H(u,v)F(u,v)}

Enhancement Is obtained
g(x,y) = f(x,y)+cVf(x,y) c=-1



The Laplacian in the Frequency Domain

The enhanced Image
g(x,y)=3"{F(u,v)—H(u,v)F(u,v)}
H[1-HUW]Fu,v)|

. {:1+ 47z2D2(u,v)] F(u,v)}

I
N

I
L



The Laplacian in the Frequency Domain

ab

FIGURE 4.58

(a) Original,
blurry image.

(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).
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Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

gmask (X’ y) — f (X1 y) - fLP (X’ y)
fo(Xy)= S_1[H|_|D (U’V)F(U’V)]

Unsharp masking and highboost filtering
g(X, y) — f (X’ y) + k*gmask (X’ y)

g(x,y) =3 H{[1+k*[1-H, (V)] ] F UV
H[1+k*H e (U, V)] F(u, V)]

L




Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

g(%,y) =3[k +k,*Hpp (U,V) ] F (u,v)]
k, 20 and k, >0



Gaussian Filter
D0=40

High-Frequency-Emphasis Filtering
Gaussian Filter
K1=0.5, k2=0.75

ab
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FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian
filter. (¢) Result of high-frequency-emphasis filtering using the same filter. (d) Result of
performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R. 1°
Gest, Division of Anatomical Sciences, University of Michigan Medical School.)



Homomorphic Filtering

PO y) =1(x,y)r(x, y)
3[f(xy)]=3[ix,N]3[r(x,y)] 2
z(x,y)=Inf(x,y)=Ini(x,y)+Inr(x y)

S{Z(X, y)} =S{In f(X, y)} =S{Ini(x, y)}+3{|n r(X, y)}

Z(u,v)=F(u,v)+F(u,v)



Homomorphic Filtering

S(u,v)=H(u,v)Z(u,v)

=H (u,v)F (u,v)+H(u,v)F (u,v)
s(X,y) =3"{S(u,v)}
IH{HU,v)Fu,v)+H(u,v)F (u,v)]
IH{HU,V)FU,v)}+3{Hu,Vv)F (uv)}
F(X, y) +1'(x,y)

g(x, y) — @3(0y) — oY) ar(xy) _ io (X, y) I, (X, y)



Homomorphic Filtering

FIGURE 4.60

Summary of steps L » o
in homomorphic f(x.})li‘> DET H(u, v) (DFT) exp g(x,y)
filtering.

The illumination component of an image generally is
characterized by slow spatial variations, while the
reflectance component tends to vary abruptly

These characteristics lead to associating the low
frequencies of the Fourier transform of the logarithm of an
image with illumination the high frequencies with
reflectance.
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Homomorphic Filtering

—c[D2 (u,v)/Dg]

H(u,v)=(r, —» )| 1-¢ AL

H(u,v) FIGURE 4.61
Radial cross
section of a
circularly
symmetric
YHp———— =~~~ _= i
homomorphic

Attenuate the contribution filter function.
The vertical axis is

made by illumination and at the center of

amplify the contribution made the frequency

rectangle and

distance from the
center.

D(u, v)
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E4.62

1l body PET
b) Image
ced using
morphic

1g. (Original
courtesy of
ichael

sey, CTI
yystems. )
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Homomorphic Filtering

ab

FIGURE

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
{(Stockham.)
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Selective Filtering

Non-Selective Filters:
operate over the entire frequency rectangle

Selective Filters

operate over some part, not entire frequency rectangle
e bandreject or bandpass: process specific bands

e notch filters: process small regions of the frequency
rectangle

22



Selective Filtering:
Bandreject and Bandpass Filters

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency, and # is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the
notation in the table.

Ideal Butterworth Gaussian

1

W W ) —

iy J0 iD= =D =Dyt H(u.v) = o oy

(u, v) = 2 2 L DW Hu,v)=1— ¢l
|  otherwise D? — Dj

HBP(U’V) =1- HBR(U’V)
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Selective Filtering:
Bandreject and Bandpass Filters

ab

FIGURE 4.63

(a) Bandreject
Gaussian filter.

(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity; it
is not part of the
data.
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Selective Filtering:
Notch Filters

Zero-phase-shift filters must be symmetric about the origin.
A notch with center at (u,, v,) must have a corresponding
notch at location (-ug,-v,).

Notch reject filters are constructed as products of highpass
filters whose centers have been translated to the centers of
the notches.

H (U, V) :ﬁ H, (u,v)H_, (u,v)

where H, (u,v) and H_, (u,Vv) are highpass filters whose centers are
at (u.,v,) and (-u,,-v, ), respectively.

25



Selective Filtering:

Notch Filters

H (U, V) :ﬁHk(U’V)H_k(LLV)

where H, (u,v) and H_, (u,Vv) are highpass filters whose centers are

at (u.,v, ) and (-u,,-v, ), respectively.

A Butterworth notch reject filter of order n

HNR(U’V) —

1

3
1| 1+ [ Dy, / D ()]

1

1+[D,, /D, (u,v)]" -

D UV) =[(U-M/2-u)? +(V-N/2-v)? |

D (UV)=[U-M/2+U)’ +(v=N/2+v)* |

26



Examples:
Notch
Filters (1)

a b
c d

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

A Butterworth notch
reject filter D,=3
and n=4 for all
notch pairs
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Examples:
Notch Filters

(2)
ab
c d

FIGURE 4.65

(a) 674 X 674
image of the
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum: The :
bursts of energy ' A oo
in the vertical axis e o
near the origin

correspond to the

interference

pattern. (¢) A

vertical notch

reject filter.

(d) Result of

filtering. The thin

black border in

(c) was added for

clarity; it is not

part of the data.

(Original image

courtesy

of Dr. Robert

A West,

NASA/JPL.)




FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of

Fig. 4.65(a).

(b) Spatial
pattern obtained
by computing the
IDFT of (a).
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