
PCC-CS 503
Object oriented programming

SUVOBRATA SARKAR

DEPARTMENT OF CSE

10-02-2024 SUVOBRATA SARKAR 1

Object Oriented Concepts

to learn how to apply object -oriented concepts to all the stages of

the software development life cycle.

Object-oriented modeling and design is a way of thinking about

problems using how the models are organized around real world

concepts.

The fundamental construct is the object, which combines both

data structure and behavior.

10-02-2024 SUVOBRATA SARKAR 2

OBJECT ORIENTED CONCEPTS(contd…)

OBJECT

Objects are the physical and conceptual things that exist in the universe.

 In programming terms, an object is a self-contained component that contains

properties and methods needed to make a certain type of data useful.

Object is an instance of a class.

CLASS

A class is a blueprint or template or set of instructions to build a specific type of

object.

 In programming terms, a class is a way to bind, data and functions into a single unit.

A class is an abstraction that describes important properties of object.

10-02-2024 SUVOBRATA SARKAR 3

Parameters CLASS OBJECT

Definition Class is mechanism of binding data
members and associated methods in

a single unit.

Instance of class or variable of class.

Existence It is logical existence It is physical existence

Memory Allocation Memory space is not allocated,
when it is created.

Memory space is allocated, when it
is created.

Declaration/definition Definition is created once. It is created many time as you
require.

Difference Between Class and Object

10-02-2024 SUVOBRATA SARKAR 4

WHAT IS OBJECT ORIENTATION?

OO means that we can organized a software as a collection of discrete

objects (that incorporate both data structure and behavior).

 There are four aspects (characteristics) required by an OO approach:

 Identity.

Classification.

Inheritance.

 Polymorphism.

10-02-2024 SUVOBRATA SARKAR 5

Identity:

 Identity means that data is quantized into discrete, distinguishable entities

called objects.

• Examples for objects: personal computer, bicycle, queen in chess etc.

Objects can be concrete (such as a file in a file system) or conceptual (such

as scheduling policy in a multiprocessing OS). Each object has its own inherent

identity. (i.e two objects are distinct even if all their attribute values are identical).

 In programming languages, an object is referenced by a unique handle.

Classification:

 Classification means that objects with the same data structure (attribute) and

behavior (operations) are grouped into a class.

• E.g. paragraph, monitor, chess piece.

Each object is said to be an instance of its class.

Each class describes a possibly infinite set of individual objects.

10-02-2024 SUVOBRATA SARKAR 6

Fig below shows objects and classes

10-02-2024 SUVOBRATA SARKAR 7

Inheritance:

 It is the sharing of attributes and operations (features) among classes based

on a hierarchical relationship. A super class has general information that sub

classes refine and elaborate.

• E.g. Scrolling window and fixed window are sub classes of window.

Polymorphism:

 Polymorphism means that the same operation may behave differently for

different classes.

• For example move operation behaves differently for a pawn than for the

queen in a chess game.

 An operation is a procedure/transformation that an object performs or is

subjected to.

 An implementation of an operation by a specific class is called a method.

10-02-2024 SUVOBRATA SARKAR 8

Object Oriented Development

10-02-2024 SUVOBRATA SARKAR 9

 Object oriented Development refers to the software life cycle: Analysis, Design

and Implementation.

 The essence of OO Development is the identification and organization of

application concepts, rather than their final representation in a programming

language.

 It‘s a conceptual process independent of programming languages.

 OO development is fundamentally a way of thinking and not a programming

technique.

What is Object Oriented Development?

10-02-2024 SUVOBRATA SARKAR 10

Object Oriented Methodology

Object Oriented Methodology is a methodology for object oriented development and

a graphical notation for representing objects oriented concepts. This methodology is

termed as OMT. The methodology has the following stages:

1. Analysis

2. System design

3. Object design

4. Implementation

10-02-2024 SUVOBRATA SARKAR 11

Object Oriented Methodology(contd..)

ANALYSIS

 An analysis model is a concise, precise abstraction of what the desired system

must do, not how it will be done.

 It should not contain any implementation details.

 The objects in the model should be application domain concepts and not the

computer implementation concepts.

SYSTEM DESIGN

 The designer makes high level decisions about the overall architecture.

 In system design, the target system is organized as various subsystems based on

both the analysis structure and the proposed architecture.

10-02-2024 SUVOBRATA SARKAR 12

Object Oriented Methodology(contd..)

OBJECT DESIGN

The designer builds a design model based on the analysis model but containing

implementation details.

 The focus of object design is the data structures and algorithms needed to

implement each cycle.

IMPLEMENTATION

 The object classes and relationships developed during object design are finally

translated into a particular object oriented programming language, database, or

hardware implementation.

 During implementation, it is important to follow good software engineering practice

so that the system can remain the traceability, flexibility and extensibility.

10-02-2024 SUVOBRATA SARKAR 13

Three models

We use three kinds of models to describe a system from different view points.

1. Class Model—for the objects in the system & their relationships. It describes the static structure of the

objects in the system and their relationships. Class model contains class diagrams- a graph whose nodes

are classes and arcs are relationships among the classes.

2. State model—for the life history of objects. It describes the aspects of an object that change over time.

It specifies and implements control with state diagrams-a graph whose nodes are states and whose arcs

are transition between states caused by events.

3. Interaction Model—for the interaction among objects. It describes how the objects in the system co-

operate to achieve broader results. This model starts with use cases that are then elaborated with sequence

and activity diagrams.

Use case – focuses on functionality of a system – i.e what a system does for users.

Sequence diagrams – shows the object that interact and the time sequence of their interactions.

Activity diagrams – elaborates important processing steps.

10-02-2024 SUVOBRATA SARKAR 14

ADVANTAGES OF OBJECT ORIENTED METHODOLOGY

The systems designed using OOM are closer to the real world as the real world

functioning of the system is directly mapped into the system designed using OOM.

The objects in the system are immune to requirement changes because of data hiding and

encapsulation features of object-orientation.

OOM designs encourage more reusability.

Another way of reusability is provided by the inheritance feature of the object-

orientation. The concept of inheritance allows the programmer to use the existing classes

in new applications i.e. by making small additions to the existing classes can quickly

create new classes.

As the programmer has to spend less time and effort so he can utilize saved time (due to

the reusability feature of the OOM) in concentrating on other aspects of the system.

10-02-2024 SUVOBRATA SARKAR 15

OBJECT ORIENTED CONCEPTS

ABSTRACTION

 Abstraction is "To represent the essential feature without representing the back ground details."

 Abstraction makes to focus on what the object does instead of how it does it.

 Abstraction provides you a generalized view of your classes or object by providing relevant

information.

 Abstraction is the process of hiding the working style of an object, and showing the information of an

object in understandable manner.

ENCAPSULATION

 Wrapping up data member and method together into a single unit (i.e. Class) is called Encapsulation.

 Encapsulation is like enclosing in a capsule. That is enclosing the related operations and data related

to an object into that object.

 Encapsulation means hiding the internal details of an object, i.e. how an object does something.

 Encapsulation prevents clients from seeing its inside view, where the behaviour of the abstraction is

implemented.

 Encapsulation is a technique used to protect the information in an object from the other object.

10-02-2024 SUVOBRATA SARKAR 16

Abstraction Encapsulation

Abstraction solves the problem in the design level. Encapsulation solves the problem in the implementation
level.

Abstraction is used for hiding the unwanted data and
giving relevant data.

Encapsulation means hiding the code and data into a
single unit to protect the data from outside world.

Abstraction lets you focus on what the object does instead
of how it does it

Encapsulation means hiding the internal details or
mechanics of how an object does something.

Abstraction- Outer layout, used in terms of design.
For Example:-
Outer Look of a Mobile Phone, like it has a display screen
and keypad buttons to dial a number.

Encapsulation- Inner layout, used in terms of
implementation.
For Example:-
Inner Implementation detail of a Mobile Phone, how
keypad button and Display Screen are connect with each
other using circuits.

10-02-2024 SUVOBRATA SARKAR 17

Difference between Abstraction and Encapsulation

POLYMORPHISM

 Polymorphism means one name many forms. It is the property of an object to behave differently in

different instances.

 One function behaves different forms.

 In other words, "Many forms of a single object is called Polymorphism."

INHERITANCE

 Inheritance is the capability of one class to acquire properties and characteristics from another class.

 The class whose properties are inherited by other class is called the Parent or Base or Super class.

And, the class which inherits properties of other class is called Child or Derived or Sub class.

 Inheritance makes the code reusable. When we inherit an existing class, all its methods and fields

become available in the new class, hence code is reused.

 All members of a class except Private, are inherited

10-02-2024 SUVOBRATA SARKAR 18

Purpose of Inheritance

1. Code Reusability

2. Method Overriding (Hence, Runtime Polymorphism.)

3. Use of Virtual Keyword

The various types of Inheritance are listed below:

1. Single Inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance (also known as Virtual Inheritance)

10-02-2024 SUVOBRATA SARKAR 19

Single Inheritance

In this type of inheritance one derived class inherits from only one base

class. It is the simplest form of Inheritance.

10-02-2024 SUVOBRATA SARKAR 20

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two

base classes.

10-02-2024 SUVOBRATA SARKAR 21

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

10-02-2024 SUVOBRATA SARKAR 22

Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits

from some other class. The Super class for one, is sub class for the other.

10-02-2024 SUVOBRATA SARKAR 23

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

10-02-2024 SUVOBRATA SARKAR 24

10-02-2024 SUVOBRATA SARKAR 25

MODELING

 A model is an abstraction of something for the purpose of

understanding it before building it.

 A model is also considered as a miniature form of a system.

 A model as a simplified representation of reality.

 A model provides a means for conceptualization and communication of

ideas in a precise and unambiguous form.

 The word model has two dimensions:
i) A view of a system ii) A stage of development

10-02-2024 SUVOBRATA SARKAR 26

PURPOSE OF MODELING

 Testing a physical entity before building it.

 Provides easier communication with the customers /

stakeholders.

 Can be used as a better visualization aid.

 Helps to reduce complexity during the actual

implementation

10-02-2024 SUVOBRATA SARKAR 27

OMT METHODOLOGY

 OMT (Object Modelling Techniques) is an object-oriented software development methodology

given by James Rumbaugh et.al. This methodology describes a method for analysis, design and

implementation of a system using object-oriented technique.

 The OMT consists of three related but different viewpoints each capturing important aspects of

the system i.e. the static, dynamic and functional behaviours of the system. These are described

by object model, dynamic model and functional model of the OMT.

 The object model describes the static, structural and data aspects of a system.

 The dynamic model describes the temporal, behavioural and control aspects of a system.

 The functional model describes the transformational and functional aspects of a system.

10-02-2024 SUVOBRATA SARKAR 28

OBJECT ORIENTED MODELS

Object model

 Describes basic structure of objects and their relationships.

 Contains object diagram.

 Object diagram is a graph whose nodes (vertices) are object classes (classes) and whose arcs

(edges) are relationships among classes.

Dynamic model

 Describes the aspects of a system that change over time.

 It specifies and implement control aspects of a system.

 Contains state diagram.

 State diagram is a graph whose nodes (vertices) are states and whose arcs (edges) are transitions.

10-02-2024 SUVOBRATA SARKAR 29

OBJECT ORIENTED MODELS

Functional model

 Describes the data value transformation within a system.

 It represents how the input data is converted into the required

output data.

 Contains data flow diagrams (DFD).

 DFD is a graph whose nodes are process and whose arcs are

data-flows.

10-02-2024 SUVOBRATA SARKAR 30

OBJECT vs DYNAMIC vs FUNCTIONAL MODELS

Model Represents Diagrams Graph Representation

Vertices Edges

OBJECT Static or structural
features of a system.

Class diagram Class Relationship

DYNAMIC Aspects of a system
that

change over time.

State diagram State Transition

FUNCTIONAL Data transformation
in

a system.

Data Flow Diagram Process Data / Dataflow

10-02-2024 SUVOBRATA SARKAR 31

OBJECT MODELING
The object model describes the structure of the objects in the system - their identity, their relationships to other

objects, their attributes, and their operations.

The object model is represented graphically with an object diagram. The object diagram contains classes

interconnected by association lines.

 Each class represents a set of individual objects. The association lines establish relationships among classes.

Each association line represents a set of links from the object of one class to the object of another class.

OBJECT AND CLASS
A class describes a collection of similar objects. It is a template where certain basic characteristics of a set of

objects are defined.

A class defines the basic attributes and the operations of the objects of that type. Defining a class does not define

any object, but it only creates a template. For objects to be actually created, instances of the class are to be created

as per the requirement of the case.

10-02-2024 SUVOBRATA SARKAR 32

REPRESENTATION OF CLASS IN OMT

In OMT, classes are represented by a rectangular box which may be divided into three parts as shown in

Figure below. The top part contains the name of the class, middle part contains a list of attributes and bottom

part contains a list of operations.

Class_Name

Attribute-name1:data-type1=default-val1
Attribute-name2:data-type2=default-val2

Operation-name1(arguments1):result-type1
Operation-name2(arguments2):result-type2

10-02-2024 SUVOBRATA SARKAR 33

REPRESENTATION OF CLASS IN OMT

 Class name represents the name of the class. The class name should start with a character followed by combination of

letters or digits. The class name should begin with upper-case letter. No white spaces are allowed in class names.

Underscore (_) can be used.

 An attribute is a data value held by objects in a class. Each attribute has a value for each object instance. This value

should be a pure data value, not an object. Attributes are listed in the second part of the class box. Attributes may or

may not be shown; it depends on the level of detail desired. Each attribute name may be followed by the optional

details such as type and default value. An object model should generally distinguish independent base attributes from

dependent derived attributes.

 An operation is a function or transformation that may be applied to or by objects in a class. Operations are listed in the

third part of the class box. Operations may or may not be shown; it depends on the level of detail desired. Each

operation may be followed by optional details such as argument list and result type.

10-02-2024 SUVOBRATA SARKAR 34

Examples for class representations

Book

title: string

author:string

publisher:string

open()

close()

read()

Class Book:

OBJECT

 An object is an instance of an object class.

 An object has the following four main characteristics:

• Unique identification

• Set of attributes

• Set of states

• Set of operations (behaviour)

 Every object has a unique name by which it is identified in the system.

 Rounded box represents an object instance in OMT.

 Object instance is a particular object from an object class.

 The box may/may not be divided in particular regions. Object instances can be

used in instance diagrams, which are useful for documenting test cases and

discussing examples.

LINKS

A link is a physical or conceptual connection between object instances.

 In OMT, link is represented by a line labelled with its name as shown below.

ASSOCIATIONS

 An association describes a group of links with common structure and common semantics between two or more

classes.

 Association is represented by a line labelled with the association name as shown below.

 Association names are optional. If the association is given a name, it should be written above the line.

 In case of a binary association, the name reads in a particular direction (i.e. left to right), but the binary

association can be traversed in either direction.

 For example, a student studies a subject or a subject is studied by a student.

 All the links in an association connect objects from the same classes. Associations are bidirectional in nature.

MULTIPLICITY

 It specifies how many instances of one class may relate to a single instance of an associated class. Multiplicity

constrains the number of related objects.

 There are special line terminators to indicate certain common multiplicity values.

 A solid ball is the symbol for "many", meaning zero, one or more.

 A hollow ball indicates "optional", meaning zero or one.

 The multiplicity is indicated with special symbols at the ends of association lines.

 In the most general case, multiplicity can be specified with a number or set of intervals. If no multiplicity symbol

is specified that means a one-to-one association.

 The rules of multiplicity are summarized below:

 Line without any ball indicates one-to-one association.

 Hollow ball indicates zero or one.

 Solid ball indicates zero, one or more.

 Numbers written on solid ball such as 1,2,6 indicates 1 or 2 or 6.

 Numbers written on solid ball such as 1+ indicates 1 or more, 2+ indicates 2 or more

TYPES OF ASSOCIATIONS

 An association can be unary, binary, ternary or n-ary.

 Unary association is between the same class as shown below

 Example of unary association is Person teaches Person as shown below.

Other examples of unary association can be Person marries a Person, Person manages Person etc.

Example of a binary association is “Country has capital city”. One country has only

one capital city. So multiplicity of this association is one-to-one as shown below.

Another example of a binary association is “Student learns subject”. One student can learn many subjects or one

subject can be learnt by many students. So multiplicity of this association is many-to-many as shown below.

Another example of binary association is “Person possesses a Passport”. Either a person can have one passport or

no passport but one passport can be with one person. So multiplicity of this association is one-to-optional as shown

below.

Another example of binary association is “Company employs Person”. One company can employ zero, one or more

persons but one person can be employed in one company only (assume). So multiplicity of this association is one-to-

many as shown below.

10-02-2024 SUVOBRATA SARKAR 45

 Ternary association is an association among three classes. On the same line, n-ary association is an association

among n classes.

 The OMT symbol for ternary and n-ary associations is a diamond with lines connecting to related classes as shown

below. A name for the association is optional and is written next to the diamond. An n-ary associations cannot be

subdivided into binary associations without losing information.

10-02-2024 SUVOBRATA SARKAR 46

 Example of a ternary association. Programmers develop Projects in (programming) Languages. One programmer can

be engaged in zero, one or more projects and can know zero, one or languages. Similarly, one project can be

developed by one or more programmers and in one or more languages. So this association along with its multiplicity

is shown below.

10-02-2024 SUVOBRATA SARKAR 47

ADVANCED OBJECT MODELLING CONCEPTS

LINK ATTRIBUTES

 Sometimes, an attribute(s) cannot be associated with either of the two classes associated by the association. In

such cases, the attribute(s) is associated with the association and is called as link attribute. It is a property of

the links in an association.

 The OMT notation for a link attribute is a box attached to the association by a loop as shown below.

10-02-2024 SUVOBRATA SARKAR 48

For example: A File is accessed by a User. So, the classes File and User are related by association, the association

named “AccessedBy”. Many users can access one file and one user can access many files. So, multiplicity of the

association is many-to-many. Now, the attribute “access-permission” cannot be associated with either File class or

with User class. This attribute can be associated with the link as shown below. Hence, access-permission is link

attribute.

10-02-2024 SUVOBRATA SARKAR 49

It is also possible to model an association as a class such class is called as link class as shown in below figure. Each link

becomes one instance of the class. The notation for this kind of association is the same as for a link attribute and has a

name and (optional) operations added to it.

10-02-2024 SUVOBRATA SARKAR 50

Now, consider the example shown in below figure, where whole class is associated with the link. In this example, the

class Authorization is a link class. It has one attribute “access-permission” and two methods grantPermission() and

changePermission().

10-02-2024 SUVOBRATA SARKAR 51

ROLE NAMES

 A role is one end of an association. A binary association can have two roles, each of which may have a role name. A

role name is a name that uniquely identifies one end of an association.

Roles provide a way of viewing a binary association as a traversal from one object to a set of associated objects.

 Each role on a binary association identifies an object or set of objects associated with an object at the other end.

10-02-2024 SUVOBRATA SARKAR 52

 The use of role names is optional, but is often easier and less confusing to assign role names instead of, or in addition

to, association names. Role names are necessary for associations between two objects of the same class. They are also

useful to distinguish between two associations between the same pair of classes.

 Follow these two guidelines for role names:

i) All role names on the far end of associations attached to a class must be unique.

ii) No role name should be the same as an attribute name of the source class. It is also possible to use role names for

n-ary associations.

 The role name is a derived attribute whose value is a set of related objects. Use of role names provides a way of

traversing associations from an object at one end, without explicitly mentioning the association.

 For example, consider the association ‘a person works for a company’, in this employee and employer are role names

for the classes Person and Company respectively as shown in figure.

10-02-2024 SUVOBRATA SARKAR 53

ORDERING

 Usually the objects on the "many" side of an association have no explicit order, and can be regarded as

a set. Sometimes the objects on the many side of an association have order. Writing {ordered} next to

the multiplicity dot as shown in figure below, indicates an ordered set of objects of an association.

10-02-2024 SUVOBRATA SARKAR 54

Consider the example of association between Window class and Screen class. A screen

can contain a number of windows. Windows are explicitly ordered. Only topmost

window is visible on the screen at any time.

10-02-2024 SUVOBRATA SARKAR 55

QUALIFICATION

A qualifier is an association attribute. A qualified association relates two object classes and a qualifier. The qualifier

is a special attribute that reduces the effective multiplicity of an association. One-to-many and many-to-many

associations may be qualified.

 Qualifier is represented as shown below:

10-02-2024 SUVOBRATA SARKAR 56

 The qualifier is drawn as a small box on the end of the association line near the class it qualifies. The qualifier

rectangle is part of the association, not of class. The qualifier distinguishes among the set of objects at the "many" end

of an association. A qualified association can also be considered a form of ternary association. The advantage of the

qualification is that it improves semantic accuracy and increases the visibility of navigation paths.

 For example, a person object may be associated to a Bank object as shown in figure below. An attribute of this

association is the account No. The account No is the qualifier of this association.

10-02-2024 SUVOBRATA SARKAR 57

AGGREGATION

 Aggregation is another relationship between classes. It is a tightly coupled form of association with some extra

semantics. It is the “part-whole” or “a-part-of” relationship in which objects representing the component of

something are associated with an object representing the entire assembly.

 Aggregations are drawn like associations, except a small hollow diamond indicating the assembly end of the

relationship as shown in figure below. The class opposite to the diamond side is part of the class on the diamond side.

10-02-2024 SUVOBRATA SARKAR 58

For example, a team is aggregation of players. This can be modelled as shown below

• Aggregation can be fixed, variable or recursive.

• In a fixed aggregation number and subtypes are fixed i.e. predefined.

• In a variable aggregation number of parts may vary but number of levels is finite.

• A recursive aggregate contains, directly or indirectly, an instance of the same

aggregate. The number of levels is unlimited. For example, as shown in figure below,

a computer program is an aggregation of blocks, with optionally recursive compound

statements.

• The recursion terminates with simple statement. Blocks can be nested to arbitrary

depth.

10-02-2024 SUVOBRATA SARKAR 59

One more example of aggregation is shown below. A company is composed of zero, one or more divisions.

A division is composed of zero, one or more sections.

10-02-2024 SUVOBRATA SARKAR 60

Another example: A pen consists of refill, A refill consist of nib.

10-02-2024 SUVOBRATA SARKAR 61

Aggregation versus Association

Aggregation is a special form of association, not an independent concept.

Aggregation adds semantic connotations.

 If two objects are tightly bound by a part-whole relationship, it is an aggregation. If

the two objects are usually considered as independent, even though they may often be

linked, it is an association.

Aggregation is drawn like association, except a small (hollow) diamond indicates the

assembly end.

The decision to use aggregation is a matter of judgment and can be arbitrary.

10-02-2024 SUVOBRATA SARKAR 62

INHERITANCE

Inheritance is a way to form new classes using classes that have already

been defined. Inheritance is intended to help reuse existing code with

little or no modification. The new classes, known as derived classes (or

child classes or sub classes), inherit attributes and behaviour of the pre-

existing classes, which are referred to as base classes (or parent classes

or super classes) as shown below

The inheritance relationship of sub- and super classes gives rise to a

hierarchy.

Inheritance is referred as generalization relationship.

10-02-2024 SUVOBRATA SARKAR 63

GENERALIZATION

The Generalization association ("is a") is the relationship between the base class that is

named as “superclass” or “parent” and the specific class that is named as “subclass” or

“child”.

Inheritance is a “is-a” relationship between two

classes. For example, Student is a Person;

Chair is Furniture; Parrot is a Bird etc. in all

these examples, first class (i.e. Student, Chair,

Parrot) inherits properties from the second

class (i.e. Person, Furniture, Bird).

10-02-2024 SUVOBRATA SARKAR 64

The Generalization association is also known as Inheritance. The subclass is a particular case of the superclass and inherits

all attributes and operations of superclass, but can have your own additional attributes and operations.

 In UML is used also the multiple inheritance when the subclass inherits properties and behaviours of more than one

superclass.

 On the UML Diagram the Generalization association represents as the line with empty triangle that connects superclass

and subclass as shown below.

10-02-2024 SUVOBRATA SARKAR 65

There are several reasons to use inheritance as enumerated below:

• Inheritance for specialization

• Inheritance for generalization

• Inheritance for extension

• Inheritance for restriction

• Inheritance for overriding

GROUPING CONSTRUCTS
 There are two grouping constructs: module and sheet.

 Module is logical construct for grouping classes, associations and generalizations. An object model consists of

one or more modules. The module name is usually listed at the top of each sheet.

 A sheet is a single printed page. Sheet is the mechanism for breaking a large object model into a series of

pages. Each module is contained in one or more sheets. Sheet numbers or sheet names inside circle contiguous

to a class box indicate other sheets that refer to a class.

10-02-2024 SUVOBRATA SARKAR 66

DYNAMIC MODELING

Dynamic model describes those aspects of the system that changes with the time.

 It is used to specify and implement control aspects of the system. It depicts states,

transitions, events and actions.

The dynamic model includes event trace diagrams describing scenarios.

An event is an external stimulus from one object to another, which occurs at a particular

point in time. An event is a one-way transmission of information from one object to

another.

A scenario is a sequence of events that occurs during one particular execution of a system.

Each basic execution of the system should be represented as a scenario.

10-02-2024 SUVOBRATA SARKAR 67

DYNAMIC MODELING(contd..)

The dynamic model is represented graphically by state diagrams.

A state corresponds to the interval between two events received by an object and

describes the "value" of the object for that time period.

A state is an abstraction of an object's attribute values and links, where sets of

values are grouped together into a state according to properties that affect the

general behaviour of the object.

Each state diagram shows the state and event sequences permitted in a system for

one object class.

10-02-2024 SUVOBRATA SARKAR 68

SCENARIO

A scenario is a sequence of events that occurs during one particular

execution of a system.

Each basic execution of the system should be represented as a scenario.

The scope of scenario may vary. It may include all events in the system

or it may include only those events generated by certain objects. A

scenario can be written as a list of text statements.

10-02-2024 SUVOBRATA SARKAR 69

Example: A scenario to use ATM for withdrawing money. Each event transmits information from one object to another.

For example, the event “the ATM asks the user to insert a card” transmits a signal from the ATM to the User. The next

event is “the user inserts a cash card”. The next event is “the ATM accepts the card and reads its serial no.” and so on.

10-02-2024 SUVOBRATA SARKAR 70

EVENT TRACE DIAGRAM

The limitation of scenario is that it is not clear from scenario, how many objects

are involved and which object generates an event and which object receives an

event.

To overcome this limitation, an event-trace diagram is introduced. In the event-

trace diagram, the sequence of events and the objects exchanging events both can

be shown.

The diagram shows each object as a vertical line and each event as a horizontal

arrow from the sender object to the receiver object. Time increases from top to

bottom. Spacing between horizontal arrows carries no information. Figure 3.2

below shows the event-trace diagram for interaction with the ATM.

10-02-2024 SUVOBRATA SARKAR 71

Example: In this diagram, four

objects – User, ATM, Consortium

and Bank - are involved, which are

shown with four vertical lines.

User generates an event “insert

card” which is shown as horizontal

arrow from user to ATM. That

means source of the event is User

object and destination of the event

is ATM. In response to this event,

the ATM generates the “request

password” event to the User.

Spacing between these two arrows

is insignificant but the event “insert

card” occurs before the event

“request password” and so on.

10-02-2024 SUVOBRATA SARKAR 72

STATE MACHINE

 A state machine is a behaviour which specifies the sequence of states an object visits during

its lifetime in response to events, together with its responses to those events.

 State: A state is a condition during the life of an object during which it satisfies some

condition, performs some activity, or waits for some external event.

 A state corresponds to the interval between two events received by an object and describes the

"value" of the object for that time period.

 A state is an abstraction of an object's attribute values and links, where sets of values are

grouped together into a state according to properties that affect the general behaviour of the

object.

 A sub-state is a state that is nested in another state. A state that has sub-states is called a

composite state. A state that has no sub-states is called a simple state. Sub-states may be

nested to any level.

10-02-2024 SUVOBRATA SARKAR 73

Event: An event is the specification of a significant occurrence. For a state machine, an event

is the occurrence of a stimulus that can trigger a state transition.

 In other words, an event is something that happens at a point in time. An event does not

have duration.

 An individual stimulus from one object to another is an event. Press a key on the key board,

train departs from station are examples of events.

 Transition: A transition is a relationship between two states indicating that an object in the

first state will, when a specified set of events and conditions are satisfied, perform certain

actions and enter the second state. Transition can be self-transition. It is a transition whose

source and target states are the same.

 Action: An action is an executable, atomic (with reference to the state machine)

computation. Actions may include operations, the creation or destruction of other objects, or

the sending of signals to other objects (events).

 An action is an instantaneous operation. An action represents an operation whose duration is

insignificant compared to the resolution of the state diagram. For instance, disconnect phone

line might be an action in response to an on-hook event for the phone line. An action is

associated with an event.

10-02-2024 SUVOBRATA SARKAR 74

Action: An action is an executable, atomic (with reference to the state machine) computation.

Actions may include operations, the creation or destruction of other objects, or the sending of

signals to other objects (events).

 An action is an instantaneous operation. An action represents an operation whose duration is

insignificant compared to the resolution of the state diagram. For instance, disconnect phone

line might be an action in response to an on-hook event for the phone line. An action is

associated with an event.

 Activity: Activity is an operation that takes time to complete. An activity is associated with a

state. Activity includes continuous operations such as displaying a picture on a television

screen as well as sequential operations that terminate by themselves after an interval of time

such as closing a valve or performing a computation.

 A state may control a continuous activity such as ringing a telephone bell that persists until an

event terminates it causing the transition of the state. Activity starts on entry to the state and

stops on exit. A state may also control a sequential activity such as a robot moving a part that

progresses until it completes or until it is interrupted by an event that terminates prematurely.

10-02-2024 SUVOBRATA SARKAR 75

STATE DIAGRAM

State diagrams are used to describe the behaviour of a system. State diagrams

describe all of the possible states of an object as events occur.

Each diagram usually represents objects of a single class and tracks the different

states of its objects through the system.

 It relates events and states. A change of state caused by an event is called a

transition. Transition is drawn as an arrow from the receiving state to the target

state.

A state diagram is graph whose nodes are states and whose directed arcs are

transitions labelled by event names. State diagram specifies the state sequence

caused by an event sequence.

10-02-2024 SUVOBRATA SARKAR 76

When to use state diagrams ?

Use state diagrams to demonstrate the behaviour of an object through many use

cases of the system.

Only use state diagrams for classes where it is necessary to understand the

behaviour of the object through the entire system.

Not all classes will require a state diagram and state diagrams are not useful for

describing the collaboration of all objects in a use case. State diagrams are

combined with other diagrams such as interaction diagrams and activity diagrams.

10-02-2024 SUVOBRATA SARKAR 77

How to draw state diagrams ?

State diagrams have very few elements. The basic elements are rounded boxes representing the state of

the object and arrows indicting the transition to the next state. The activity section of the state symbol

depicts what activities the object will be doing while it is in that state as shown in figure below.

10-02-2024 SUVOBRATA SARKAR 78

Initial and Final States: All state diagrams being with an initial state of the object as shown below. This is the

state of the object when it is created. After the initial state the object begins changing states. Conditions based

on the activities can determine what the next state the object transitions to.

10-02-2024 SUVOBRATA SARKAR 79

The initial state is denoted by a filled black circle and may be labeled with a name. The

final state is denoted by a circle with a dot inside and may also be labeled with a name as

shown in figure below

10-02-2024 SUVOBRATA SARKAR 80

Transitions: Transitions from one state to the next are denoted by lines with arrowheads.

A transition may have a trigger, a guard and an effect, as shown in figure below.

"Trigger" is the cause of the transition, which could be a signal, an event, a change in

some condition, or the passage of time. "Guard" is a condition which must be true in

order for the trigger to cause the transition. "Effect" is an action which will be invoked

directly on the object that owns the state machine as a result of the transition.

10-02-2024 SUVOBRATA SARKAR 81

State Actions: In the transition example above, an effect was associated with the transition. If the target state

had many transitions arriving at it, and each transition had the same effect associated with it, it would be better

to associate the effect with the target state rather than the transition. This can be done by defining an entry

action for the state. The diagram below shows a state with an entry action and an exit action. It is also possible

to define actions that occur on events, or actions that always occur. It is possible to define any number of

actions of each type.

10-02-2024 SUVOBRATA SARKAR 82

Self-Transitions: A state can have a transition that returns to itself, as shown in the Figure

below. This is the most useful when an effect is associated with the transition.

10-02-2024 SUVOBRATA SARKAR 83

Compound States: A sub-state is a state that is nested in another state. A state that has sub-states is called a composite

state. A state that has no sub-states is called a simple state. Sub-states may be nested to any level. The notation in the

above version indicates that the details of the Check PIN submachine are shown in a separate diagram.

10-02-2024 SUVOBRATA SARKAR 84

10-02-2024 SUVOBRATA SARKAR 85

10-02-2024 SUVOBRATA SARKAR 86

FUNCTIONAL MODELLING

The functional model describes computations and specifies those aspects of the

system concerned with transformations of values - functions, mappings,

constraints, and functional dependencies. The functional model captures what the

system does, without regard to how or when it is done.

The functional model is represented graphically with multiple data flow

diagrams, which show the flow of values from external inputs, through

operations and internal data stores, to external outputs.

Data flow diagrams show the dependencies between values and the computation

of output values from input values and functions. Functions are invoked as

actions in the dynamic model and are shown as operations on objects in the

object model.

10-02-2024 SUVOBRATA SARKAR 87

DATA FLOW DIAGRAMS (DFD)

The DFD is a simple graphical formalism that can be used to represent a

system in terms of the input data to the system, various processing carried

out on that data, and the output generated by the system.

DFD is used to represent the data transformations. That is it shows how

input data is transformed into suitable output data.

DFD is also termed as Bubble chart though a process is represented using

bubble.

10-02-2024 SUVOBRATA SARKAR 88

Advantages of DFD

DFDs are simple to understand and use.

 It uses a very few primitive symbols to represent the functions performed by a system

and the data flow among these functions.

There are two different notations used in DFDs.

Gane and Sarson notation

DeMarco and Yourdon notation

10-02-2024 SUVOBRATA SARKAR 89

10-02-2024 SUVOBRATA SARKAR 90

Entities:

 Those physical entities external to the software system such as people,

departments, other companies, other systems or even a logical entity like bank

account.

 Entities are called sources if they are external to the system and provide data to

the system, and sinks if they are external to the system and receive information

from the system

Processes:

 A function / process is represented using a circle.

 A process must have at least one input and at least one output

 A process should be numbered.

 The name of the process should be specified in the bubble.

10-02-2024 SUVOBRATA SARKAR 91

Data stores:

 Data store represents a logical file or a data base or any media which stores data. It

can be online or “hard copy” .

 Data stores are labelled with a noun (e.g. the label “customer” indicates that

information about customers is kept in that data store)

 Data is stored whenever there are more than one process that needs it and these

processes don’t always run one after the other (if the data is ever needed in the

future it must be stored)

10-02-2024 SUVOBRATA SARKAR 92

Data flows:
 It must originate from and/or lead to a process (this means that entities and data stores cannot

communicate with anything except processes –remember that it takes a process to make the data

flow)

 It can go from process to process, but that does imply that no data is stored at that point

 It can have one arrowhead indicating the direction in which the data is flowing

 It can have 2 arrowheads when a process is altering (updating) existing records in a data store

 Elementary data cannot be decomposed into its meaningful constituents. For example, roll no, pin

code, and quantity. Aggregate data can be decomposed into its meaningful constituents. For example,

name can be decomposed into first name, middle name and last name. Sometimes an aggregate value

is split into its constituents, each of which goes to a different process. A fork in the path as shown

below is used to do this. Reverse can also be done. That is elementary data coming from different

sources can be aggregated. This is done by reversing the arrows in the diagram below.

10-02-2024 SUVOBRATA SARKAR 93

 In De Marco and Yourdon notation an additional symbol is mentioned for representing hardcopy

output.

 A data dictionary lists all data items that appear in a DFD model. The data items listed include all data

flows and lists all data items that appear in a DFD model.

10-02-2024 SUVOBRATA SARKAR 94

Synchronous and Asynchronous operations

If two processes are directly connected by a dataflow arrow, then they are

synchronous. This means that they operate at the same speed.

10-02-2024 SUVOBRATA SARKAR 95

If two processes are connected through a data store, then the speed of operation is

independent. They are asynchronous.

10-02-2024 SUVOBRATA SARKAR 96

Short comings of DFD / Disadvantages

DFDs leave ample scope to be imprecise

 Control aspects are not defined by a DFD

Though decomposition is possible, same problem has several alternative

DFD representations.

10-02-2024 SUVOBRATA SARKAR 97

CONTEXT DIAGRAM / LEVEL 0 DFD

Context diagram is the highest level of data flow representation of a system. It

represents the entire system as a single bubble. The bubble in context diagram is

annotated with the name of the software system being developed.

Context diagram establishes the context in which the system operates. That is who the

users are, what data do they input to the system and what data do they received from

the system.

All entities should be represented in the context diagram. No entities are represented in

any other levels of DFD.

10-02-2024 SUVOBRATA SARKAR 98

DRAWING DFDs

 Except for the context DFD, each DFD represents the breakdown of one process.

For example, in the hierarchy on the next page, the level 1 DFD that represents the breakdown of

process 1.2 will contain processes 1.2.1, 1.2.2 and 1.2.3. But it will not contain 1.2, nor any other

process.

 Context level diagrams show all external entities. They do not show any data stores. The context

diagram always has only one process labelled 0.

 When you draw a level 0 diagram, follow these rules:

 include all entities in the context diagram

 show any data store that are shared by the processes in the level 0 diagram

10-02-2024 SUVOBRATA SARKAR 99

 When you draw a level 1 or 2 etc. diagram, follow these rules:

 include all entities and data stores that are directly connected by data flow to the

one process you are breaking down

 show all other data stores that are shared by the processes in this breakdown

(these data stores are “internal” to this diagram and will not appear in higher level

diagrams, but will appear in lower level diagrams)

That last statement is often confusing. Here is another explanation using the hierarchy.

If a data store is used only by processes 3.2.1 and 3.2.3, then it will appear only in the

level 2 diagram that includes processes 3.2.1, 3.2.2 and 3.2.3. It will not appear in the

diagram that shows processes 3.1 and 3.2 because it is internal to process 3.2.

 A DFD that contains processes that are not further broken down is called a

primitive DFD.

DRAWING DFDs

10-02-2024 SUVOBRATA SARKAR 100

GUIDELINES FOR DRAWING DFD

 Naming conventions:

 Processes: strong verbs

 Data flows: nouns

 data stores: nouns

 external entities: nouns

 No more than 7 - 9 processes in each DFD.

 Dataflow must begin, end, or both begin & end with a process.

 Dataflow must not be split.

 A process is not an analogy of a decision in a systems or programming flowchart.

Hence, a dataflow should not be a control signal. Control signals are modelled

separately as control flows.

 Loops are not allowed.

10-02-2024 SUVOBRATA SARKAR 101

GUIDELINES FOR DRAWING DFD(Contd…)

A dataflow cannot be an input signal. If such a signal is necessary, then it must be a

part of the description of the process, and such process must be so labelled. Input

signals as well as their effect on the behaviour of the system are incorporated in the

behavioural model (say, state transition graphs) of the information system.

Decisions and iterative controls are part of process description rather than dataflow.

 If an external entity appears more than once on the same DFD, then a diagonal line

is added to the north-west corner of the rectangle (representing such entity).

 Updates to data store are represented in the textbook as double-ended arrows. This

is not, however, a universal convention. Do not use this convention since it can be

confusing. Writing to a data store implies that you have read such data store (you

cannot write without reading). Therefore, data store updates should be denoted by a

single-ended arrow from the updating process to the updated data store.

10-02-2024 SUVOBRATA SARKAR 102

Data flows that carry a whole record between a data store and a process is not labelled in

the textbook since there is no ambiguity. This is also not a universal convention. It is

better to label such data flows explicitly.

Conservation Principles:

 Data stores & Data flows: Data stores cannot create (or destroy) any data. What

comes out of a data store therefore must first have got into a data store through a

process.

 Processes: Processes cannot create data out of thin air. Processes can only

manipulate data they have received from data flows. Data outflows from processes

therefore must be derivable from the data inflows into such processes.

10-02-2024 SUVOBRATA SARKAR 103

Levelling Conventions:

Numbering: The system under study in the context diagram is given number `0'.

The processes in the top level DFD are labelled consecutively by natural numbers

beginning with 1. (Also you can number the processes in LEVEL 1 as 0.1, 0.2, 0.3,

0.4…..0.n). When a process is exploded in a lower level DFD, the processes in

such lower level DFD are consecutively numbered following the label of such

parent process ending with a period or full-stop (for example 1.2, 1.2.3, etc. or you

can use 0.1.1, 0.1.2…etc).

 Remember: Don’t mix up the numbering conventions. If you label the level 1

processes as 0.1, 0.2, 0.3…0.n then you have to number the level 2 processes as

0.1.1, 0.1.2, 0.1.3 etc.

Else if you label the level 1 processes as 1,2,3…n, then you have to number the

level 2 processes as 1.1, 1.2, 1.3 etc.

10-02-2024 SUVOBRATA SARKAR 104

Balancing: The set of DFDs pertaining to a system must be balanced in the sense

that corresponding to each dataflow beginning or ending at a process there should

be an identical dataflow in the exploded DFD.

Data stores: Data stores may be local to a specific level in the set of DFDs. A data

store is used only if it is referenced by more than one process.

External entities: Lower level DFDs cannot introduce new external entities. The

context diagram must therefore show all external entities with which the system

under study interacts. In order not to clutter higher level DFDs, detailed

interactions of processes with external entities are often shown in lower level

DFDs but not in the higher level ones.

10-02-2024 SUVOBRATA SARKAR 105

COMMONLY MADE MISTAKES IN DFDS

10-02-2024 SUVOBRATA SARKAR 106

Diagramming mistakes: Black holes, grey holes, and miracles

A second class of DFD mistakes arise when the outputs from one processing step do

not match its inputs. It is not hard to list situations in which this might occur:

• A processing step may have input flows but no output flows. This situation is

sometimes called a black hole .

• A processing step may have output flows but no input flows. This situation is

sometimes called a miracle.

• A processing step may have outputs that are greater than the sum of its inputs -

e.g., its inputs could not produce the output shown. This situation is sometimes

referred to as a grey hole.

10-02-2024 SUVOBRATA SARKAR 107

DFD OF COMPILER

LEVEL 0 DFD: CONTEXT DIAGRAM OF COMPILER

10-02-2024 SUVOBRATA SARKAR 108

10-02-2024 SUVOBRATA SARKAR 109

SYSTEM DESIGN

System design is the first stage in which the basic approach to

solving the problem is selected.

During system design, the overall structure and style are decided.

The system architecture is the overall organization of the system

into components called subsystems.

10-02-2024 SUVOBRATA SARKAR 110

STEPS IN SYSTEM DESIGN

1. Breaking a system into subsystems.

2. Identifying concurrency

3. Allocating subsystems to processors and tasks.

4. Management of data stores

5. Handling global resources

6. Choosing software control implementation

7. Handling boundary conditions

8. Setting trade-off priorities

9. Selecting the suitable architectural frame works.

10-02-2024 SUVOBRATA SARKAR 111

Organizing a system into Subsystems

Divide the system into a smaller number of components. Each major component of a

system is called a subsystem.

Each subsystem encompasses aspects of the system that share some common property

– similar functionality, the same physical location or execution on the same kind of

hardware.

Each subsystem has a well -defined interface to the rest of the system.

Each subsystem can be again decomposed into modules.

10-02-2024 SUVOBRATA SARKAR 112

 The decomposition of systems into subsystems may be organized as a sequence of horizontal

layers or vertical partitions.

 Layers: A layered system is an ordered set of virtual worlds, each built in terms of the ones

below it and providing the implementation basis for the ones above it.

 Layered architecture comes in closed or open.

 In a closed architecture, each layer is built only in terms of the immediate lower layer.

This reduces dependencies between layers and allows changes to be made most easily.

In an open architecture, a layer can use the features of any lower layer to any depth.

This reduces the need to redefine operations at each level.

 In a layered architecture model, classes within each subsystem layer provide services to

the layer above it. Ideally, this knowledge is one-way: each layer knows about the layer

below it, but the converse is not true. An example of a layered system architecture is the

ISO Reference Model for Open Systems Interconnection (OSI).

10-02-2024 SUVOBRATA SARKAR 113

10-02-2024 SUVOBRATA SARKAR 114

Partitions

Partitions vertically divide a system into several independent or weakly

subsystems, each providing one kind of service.

One difference between layers and partitions is that layers vary in their

level of abstraction, but partitions merely divide a system into pieces,

all of which have a similar level of abstraction.

Layers can be partitioned and partitions can be layered. Most large

systems require a mixture of layers and partitions.

10-02-2024 SUVOBRATA SARKAR 115

There are two types of relationships between subsystems: a) Client-Server and b) Peer-

to-peer

a) Client–Server relationship: In client-server relationship client calls on the server

for performing certain task and server replies back with the result. The client–server

characteristic describes the relationship of cooperating programs in an application. The

server component provides a function or service to one or many clients, which initiate

requests for such services.

b) Peer-to-peer relationship: In peer-to-peer relationship, each subsystem may call on

the others. The communication in this case can be much complex because individual

subsystems may not be aware about each other. Designing such type of systems may

lead to subtle design errors.

Relationships between subsystems

10-02-2024 SUVOBRATA SARKAR 116

Identifying Concurrency

 Concurrency (or distribution) is an important issue during design

process as it may affect the design of classes and their interfaces.

Concurrency can be very important for improving the efficiency of a

system.

 In the analysis model, as the real world and in hardware, all objects are

concurrent. In an implementation, not all software objects are

concurrent, because one processor may support many objects.

One important goal of the system design is to identify the objects that

must be active concurrently and the objects that have mutually exclusive

activity.

10-02-2024 SUVOBRATA SARKAR 117

For concurrent applications, such as distributed and real-time applications, the following activities

are performed:

 Identify inherent concurrency: - Two objects are inherently concurrent if they can receive

events at the same time without interacting. Inherently concurrent subsystems need not be

implemented as separate hardware units.

 Define concurrent Tasks: Many objects in a system are dependent on each other. By

examining the state diagrams of individual objects and exchange of events among them, many

objects can be folded in to a single thread of model. A thread of control is a path through a set of

state diagrams on which only a single object at a time is active.

 Make decisions about subsystem structure and interfaces. Develop the overall software

architecture. Structure the application into subsystems.

Make decisions about how to structure the distributed application into distributed

subsystems, in which subsystems are designed as configurable components. Design the

distributed software architecture by decomposing the system into distributed subsystems and

defining the message communication interfaces between the subsystems.

10-02-2024 SUVOBRATA SARKAR 118

Make decisions about the characteristics of objects, in particular, whether they are active

or passive. For each subsystem, structure the system into concurrent tasks (active objects).

During task structuring, tasks are structured using the task structuring criteria, and task

interfaces are defined. Make decisions about the characteristics of messages, in particular,

whether they are asynchronous or synchronous (with or without reply).

Make decisions about class interfaces. For each subsystem, design the information hiding

classes (passive classes). Design the operations of each class and the parameters of each

operation. Use inheritance to develop class hierarchies.

 Develop the detailed software design-addressing detailed issues concerning task

synchronization and communication, and the internal design of concurrent tasks.

 For real-time applications, analyse the performance of the design. Apply real-time

scheduling to determine if the concurrent real-time design will meet performance goals. If not,

investigate alternative software architectures.

10-02-2024 SUVOBRATA SARKAR 119

Allocation of Subsystems

The designer must allocate each concurrent subsystem to a hardware unit, either a general-

purpose processor or specialized functional unit. The system designer must do the following:

 Estimate performance needs and the resources needed to satisfy them.

 Choose hardware or software implementation for subsystems.

 Allocate software subsystems to processors to satisfy performance needs and minimize inter

processor communication

 Determine the connectivity of the physical units that implement the subsystems.

 Consider the connection between nodes and communication protocols to be used.

 Consider the need for redundant processing.

 Identify any interface implied by deployment.

 Determining physical Connectivity by considering connection topology, repeated units,

communications etc.

10-02-2024 SUVOBRATA SARKAR 120

Management of Data Storage

 System designer must decide from among several alternatives for data storage that

can be used separately or in combination of data structures, files and databases. This

involves identifying the complexity of the data, the size of the data, the type of access

to data (single user or multiple user), access times and portability.

 Different kinds of data stores provide trade-offs among cost, access time, capacity and

reliability.

 Files provide cheap, simple and permanent storage and are easy to work with.

However, file on one system may not be useful when transported to another system

because of varying file implementations over different hardware types. Files may be

used in random access mode or sequential access mode. Sequential file format is

mostly a standard format and is easy to handle. Whereas, the commands and storage

formats for random access files and index files vary in their formats.

10-02-2024 SUVOBRATA SARKAR 121

The kind of data that belongs to files can be characterized as follows:

 Data with high volumes and low information density (such as archival files or historical

data)

Modest quantities of data with simple structure.

 Data that are accessed sequentially.

 Data that can be fully read into the memory

Another alternative to store data is to use database management systems (DBMSs). There are

various kinds of DBMSs like relational, object oriented, network and hierarchical etc. Databases

make applications easier to port to different hardware and operating system platforms. One

disadvantage of DBMSs is their complex interface. The kind of data that belongs to a database

can be characterized as follows:

 Data to be stored exists in large quantity.

 Data that is to be kept in store for a very longer period of time.

 Data that must be secured against unauthorized and malicious access.

 Data that must be accessed by multiple application programs.

 Data that require updates at fine levels of detail by multiple users

10-02-2024 SUVOBRATA SARKAR 122

Handling Global Resources

The system designer must identify global resources and determine mechanisms for

controlling access to them. There are several kinds of global resources:

 Physical system: Example includes processors, tape drives and communication

channels.

 Space: Example includes keyboard, buttons on a mouse, display screen

 Logical names: Example includes object IDs, filenames, and class names.

 Access to shared data: Example includes Databases

 Physical resource such as processors, tape drives etc. can control their own access by establishing a

protocol for obtaining access.

 For a logical resource like Object ID or a database, there arises a need to provide access in a shared

environment without any conflicts. One strategy to avoid conflict may be to employ a guardian object

which controls access to all other resources.

10-02-2024 SUVOBRATA SARKAR 123

Choosing a Software Control Strategy

It is best to choose a single control style for the whole system. There are two

kinds of control flows in a software system: External control and internal

control.

External control concerns the flow of externally visible events among the

objects in the system. There are three kinds of external events: procedural-

driven sequential, event-driven sequential and concurrent.

• Procedural-driven Control: In a procedure-driven system, the control

lies within the program code. Procedures request external input and then

wait for it, when input arrives, control resumes within the procedure that

made the call.

10-02-2024 SUVOBRATA SARKAR 124

 Event-driven Control: In the sequential model, the control resides within a dispatcher

or monitor that the language, subsystem or operating system provides. In event-driven,

the developers attach application procedures to events and the dispatcher calls the

procedures when the corresponding events occur. Usually event driven systems are used

for external control in preference to procedure driven systems, because the mapping

from events to program constructs is simpler and more powerful. Event driven systems

are more modular and can handle error conditions better than procedure-driven systems.

 Concurrent system Control: Here control resides concurrently in several independent

objects, each as a separate task. A task can wait for input, but other tasks continue

execution. The operating system keeps track of the raised events while a task is being

performed so that events are not lost. Scheduling conflicts among tasks are also

resolved by the operating system.

 Internal control refers to the flow of control within a process. It exists only in the

implementation and therefore is neither inherently concurrent nor sequential.

10-02-2024 SUVOBRATA SARKAR 125

Handling boundary Conditions

Although most of the system design concerns steady-state behaviour, system designer must consider

boundary conditions as well and address issues like initialization, termination and failure (the

unplanned termination of the system).

 Initialization: It refers to initialization of constant data, parameters, global variables, tasks,

guardian objects, and classes as per their hierarchy. Initialization of a system containing

concurrent tasks must be done in a manner so that tasks can be started without prolonged delays.

There is quite possibility that one object has been initialized at an early stage and the other object

on which it is dependent is not initialized even after considerable time.

 Termination: Termination requires that objects must release the reserved resources. In case of

concurrent system, a task must intimate other tasks about its termination.

 Failure: Failure is the unplanned termination of the system, which can occur due to system fault

or due to user errors or due to exhaustion of system resources, or from external breakdown or bugs

from external system. The good design must not affect remaining environment in case of any

failure and must provide mechanism for recording details of system activities and error logs.

10-02-2024 SUVOBRATA SARKAR 126

Setting trade-off Priorities

The system designer must set priorities that will be used to guide trade-

offs for the rest of the design. For example system can be made faster

using extra memory.

Design trade-offs involve not only the software itself but also the

process of developing it. System designer must determine the relative

importance of the various criteria as a guide to making design trade-offs.

Design trade-offs affect entire character of the system.

Setting trade-offs priorities is at best vague. Priorities are generally

specified as a statement of design philosophy.

10-02-2024 SUVOBRATA SARKAR 127

Choose Common Architectural Styles

Several prototypical architectural styles are common in existing systems.

Each of these is well suited to a certain kind of system.

 Architectural styles include Pipe and Filter, Repository architecture,

Layered systems, Client –Server, Peer- Peer, Publisher – Subscriber

etc.

10-02-2024 SUVOBRATA SARKAR 128

OBJECT DESIGN
 Object design phase determines the full definitions of the classes and associations used in the

implementation, interfaces and algorithms of the methods used to implement operations.

 Adds internal objects for implementation and optimizes data structures and algorithms.

 Object oriented design is primarily a process of refinement or adding details.

STEPS IN OBJECT DESIGN

1. Combine the three models to obtain operations on classes.

2. Design algorithms to implement operations

3. Optimize access paths to data / Design optimization

4. Implementation of control for external interactions

5. Adjust class structure to increase inheritance

6. Design of associations

7. Determine object representation

8. Packing classes and associations into modules.

10-02-2024 SUVOBRATA SARKAR 129

Combine the three models to obtain operations on classes

The object, dynamic, functional models obtained after analysis is combined together

to define operations.

The designer convert the actions and activities of the dynamic model and the

processes of the functional model into operations attached to classes in the object

model.

Process of mapping the logical structure of the analysis model into a physical

organization of a program.

Algorithm implementing an operation depends on the state of the object.

The network of processes within DFD represents the body of an operation.

10-02-2024 SUVOBRATA SARKAR 130

Design algorithms to implement operations

Each operation specified in the functional model must be formulated as an

algorithm.

Algorithm shows how an operation is done.

Algorithm may be subdivided into calls on simpler operations.

Algorithm designer must

Choose algorithms that minimize the cost of implementing operations.

 Select data structures appropriate to the algorithms.

Define new internal classes and operations as necessary

Assign responsibility for operations to appropriate classes.

10-02-2024 SUVOBRATA SARKAR 131

Optimize access paths to data / Design optimization

Basic design model uses analysis model which captures the logical information about

the system, while design model must add details to support efficient information

access.

 Inefficient but semantically correct analysis model can be optimized to make the

implementation more efficient.

During design optimization, designer must

Add redundant associations to minimize access cost and maximize convenience.

Rearrange the computation for greater efficiency.

Save derived attributes to avoid re-computation of complicated expression

10-02-2024 SUVOBRATA SARKAR 132

Implementation of control for external interactions

 Designer must refine the strategy for implementing the state – event

models present in the dynamic model.

 Basic approaches to implement dynamic model are

 Using a location within the program to hold state.

 Direct implementation of a state – machine mechanism.

 Control as concurrent tasks.

10-02-2024 SUVOBRATA SARKAR 133

Adjust class structure to increase inheritance

 The designer should rearrange and adjust classes and operations to

increase inheritance

 The designer should abstract common behaviour out of group of

classes

 The designer should use delegation to share behaviour when

inheritance is semantically invalid.

10-02-2024 SUVOBRATA SARKAR 134

Design of associations

Associations are the “glue” of object model, providing access paths

between objects.

Designer must formulate a strategy for implementing the associations in

the object model.

Either choose a global strategy for implementing all associations

uniformly or select a particular technique for each association based on

the way it is used in the application.

Associations may be either one-way associations or two –way

associations.

10-02-2024 SUVOBRATA SARKAR 135

Determine object representation

Designer must choose when to use primitive types in representing objects and when

to combine groups of related objects.

Classes can be defined in terms of other classes, but eventually everything must be

implemented in terms of built-in primitive datatypes, such as integers, strings and

enumerated types.

Designer must often choose whether to combine groups of related objects.

10-02-2024 SUVOBRATA SARKAR 136

Packing classes and associations into modules

Object oriented languages have various degrees of packaging.

In large project, careful partitioning of an implementation into

packages is important to permit different persons to cooperatively

work on a program.

Packaging involves the following issues:

Hiding internal information from outside view.

Coherence of entities.

Constructing physical modules

10-02-2024 SUVOBRATA SARKAR 137

UNIFIED MODELLING LANGUAGE (UML)

UML is a standard language for specifying, visualizing, constructing,

and documenting the artefacts of software systems.

UML was created by Object Management Group (OMG) and UML 1.0

specification draft was proposed to the OMG in January 1997.

UML is a modelling language used to model software and non- software

systems.

Although UML is used for non- software systems the emphasis is on

modelling object oriented software applications. Most of the UML

diagrams discussed so far are used to model different aspects like static,

dynamic etc.

10-02-2024 SUVOBRATA SARKAR 138

BUILDING BLOCKS OF UML

The building blocks of UML can be defined as:

 Things

 Relationships

 Diagrams

10-02-2024 SUVOBRATA SARKAR 139

Things are the most important building blocks of UML. Things can be:

Structural

Behavioral

Grouping

Annotational

Structural things:

The Structural things define the static part of the model. They represent physical and

conceptual elements.

THINGS

10-02-2024 SUVOBRATA SARKAR 140

Class: Class represents set of objects having similar responsibilities.

Interface: Interface defines a set of operations which specify the

responsibility of a class.

10-02-2024 SUVOBRATA SARKAR 141

Collaboration: Collaboration defines interaction between elements.

10-02-2024 SUVOBRATA SARKAR 142

Use case: Use case represents a set of actions performed by a system for

a specific goal.

Component: Component describes any physical or replaceable part of a system.

10-02-2024 SUVOBRATA SARKAR 143

Node: A node can be defined as a physical element that exists at run time

which possess a limited memory and processing capability.

10-02-2024 SUVOBRATA SARKAR 144

 A behavioral thing consists of the dynamic parts of UML models. Following are the

behavioral things:

 Interaction: Interaction is defined as a behavior that consists of a group of messages

exchanged among elements to accomplish a specific task.

Behavioral things

10-02-2024 SUVOBRATA SARKAR 145

State machine: State machine is useful when the state of an object in its life cycle is

important. It defines the sequence of states an object goes through in response to events.

Events are external factors responsible for state change.

10-02-2024 SUVOBRATA SARKAR 146

Grouping things

 Grouping things can be defined as a mechanism to group elements of a UML model

together. There is only one grouping thing available:

 Package: Package is the only one grouping thing available for gathering structural

and behavioural things.

10-02-2024 SUVOBRATA SARKAR 147

Annotational things

 Annotational things can be defined as a mechanism to capture remarks,

descriptions, and comments of UML model elements. Note is the only one

Annotational thing available.

 Note:

A note is used to render comments, constraints etc of an UML element.

10-02-2024 SUVOBRATA SARKAR 148

RELATIONSHIPS

Relationship is another most important building block of UML. It shows how

elements are associated with each other and this association describes the functionality

of an application.

There are four kinds of relationships available.

Dependency: Dependency is a relationship between two things in which change

in one element also affects the other one.

10-02-2024 SUVOBRATA SARKAR 149

Association: Association is basically a set of links that connects elements of an UML

model. It also describes how many objects are taking part in that relationship.

Generalization: Generalization can be defined as a relationship which connects a

specialized element with a generalized element. It basically describes inheritance

relationship in the world of objects.

10-02-2024 SUVOBRATA SARKAR 150

Realization can be defined as a relationship in which two elements are connected. One

element describes some responsibility which is not implemented and the other one

implements them. This relationship exists in case of interfaces.

Realization

10-02-2024 SUVOBRATA SARKAR 151

UML DIAGRAMS

UML diagrams are the ultimate output of the entire discussion. All the

elements, relationships are used to make a complete UML diagram and

the diagram represents a system.

The visual effect of the UML diagram is the most important part of the

entire process. All the other elements are used to make it a complete

one.

10-02-2024 SUVOBRATA SARKAR 152

Various diagrams in UML

1. Class diagram – A class diagram shows a set of classes, interfaces and

collaborations and their relationships.

2. Object diagram – An object diagram shows a set of objects and their

relationships.

3. Use case diagram – A use-case diagram shows a set of use cases and actors

and their relationships

4. Sequence diagram – A sequence diagram is an interaction diagram that

emphasizes the time –ordering of messages.

5. Collaboration diagram – A collaboration diagram is an interaction diagram

that emphasizes the structural organisation of the objects that send and receive

messages.

10-02-2024 SUVOBRATA SARKAR 153

6. Activity diagram –An activity diagram is a special kind of state-

chart diagram that shows the flow from activity to activity within a

system.

7. State-chart diagram –A state-chart diagram shows a state machine,

consisting of states, transitions, events and activities.

8. Deployment diagram –A deployment diagram shows the

configuration of run time processing nodes and the components that

live on them.

9. Component diagram –A component diagram shows the

organisation and dependencies among a set of components.

10-02-2024 SUVOBRATA SARKAR 154

COMMON MECHANISMS IN UML

The UML is made simpler by the presence of four common mechanisms that apply

throughout the language: specifications, adornments, common divisions, and extensibility

mechanisms.

Specifications
 By using a specification, we can easily specify something in a bit more detail so that

the role and meaning of the term being specified is presented to us in a more clear and

concise manner.

 For example, we can give a class a rich specification by defining a full set of attributes,

operations, full signatures, and behaviours. The developer will then have a clearer

notion of what the capabilities and limitations of that class are.

 Specifications can be included in the class, or specified separately.

10-02-2024 SUVOBRATA SARKAR 155

Common Divisions

Common divisions are used in order to distinguish between two things that might

appear to be quite similar, or closely related to one another. There exist two main

common divisions: abstraction vs. manifestation and interface vs. implementation.

The distinction between a class and an object is an example of common division in

UML, where the class is an abstraction and the object is a clear manifestation of that

class. Most UML building blocks have this kind of class/object distinction, e.g. use

case, use case instance etc.

 In the second common division – interface vs. implementation – we say that an

interface declares some kind of contract, or agreement, whereas an implementation

represents one concrete realisation of that contract. The implementation is then

responsible for carrying out the interface.

10-02-2024 SUVOBRATA SARKAR 156

Adornments
 Adornments are textual or graphical items, which can be added to the basic notation of a UML

building block in order to visualise some details from that element’s specification.

 For example an abstract class consist of a public, private and protected operations, then it can be

represented as follows: + denotes public, # denotes protected and – denotes private.

10-02-2024 SUVOBRATA SARKAR 157

 For example, let us consider association, which in its most simple notation consists of

one single line. Now, this can be adorned with some additional details, such as the role

and the multiplicity of each end as shown below.

10-02-2024 SUVOBRATA SARKAR 158

Extensibility Mechanisms

The extensibility mechanisms allow you to customize and extend the

UML by adding new building blocks, creating new properties, and

specifying new semantics in order to make the language suitable for your

specific problem domain. There are three common extensibility

mechanisms that are defined by the UML:

 Stereotypes

 Tagged values

 Constraints.

10-02-2024 SUVOBRATA SARKAR 159

Stereotypes

 Stereotypes allow you to extend the vocabulary of the UML so that

you can create new model elements, derived from existing ones, but

that have specific properties that are suitable for your problem

domain.

They are used for classifying or marking the UML building blocks in

order to introduce new building blocks that speak the language of your

domain and that look like primitive, or basic, model elements.

 For example, when modelling a network you might need to have

symbols for representing routers and hubs. By using stereotyped

nodes you can make these things appear as primitive building blocks.

10-02-2024 SUVOBRATA SARKAR 160

 As another example, let us consider exception classes in Java or C++, which you

might sometimes have to model. Ideally you would only want to allow them to be

thrown and caught, nothing else. Now, by marking them with a suitable stereotype

you can make these classes into first class citizens in your model; in other words,

you make them appear as basic building blocks.

 Stereotypes also allow you to introduce new graphical symbols for providing

visual cues to the models that speak the vocabulary of your specific domain (see

fig 4).

 Graphically, a stereotype is rendered as a name enclosed by guillemots and placed

above the name of another element (see fig 3). Alternatively, you can render the

stereotyped element by using a new icon associated with that stereotype (see fig 4).

10-02-2024 SUVOBRATA SARKAR 161

10-02-2024 SUVOBRATA SARKAR 162

Tagged Values

Tagged values are properties for specifying keyword-value pairs of

model elements, where the keywords are attributes. They allow you to

extend the properties of a UML building block so that you create new

information in the specification of that element.

Tagged values can be defined for existing model elements, or for

individual stereotypes, so that everything with that stereotype has that

tagged value.

It is important to mention that a tagged value is not equal to a class

attribute. Instead, you can regard a tagged value as being a metadata,

since its value applies to the element itself and not to its instances.

10-02-2024 SUVOBRATA SARKAR 163

 One of the most common uses of a tagged value is to specify

properties that are relevant to code generation or configuration

management. So, for example, you can make use of a tagged value in

order to specify the programming language to which you map a

particular class, or you can use it to denote the author and the version

of a component.

 As another example of where tagged values can be useful, consider

the release team of a project, which is responsible for assembling,

testing, and deploying releases. In such a case it might be feasible to

keep track of the version number and test results for each main

subsystem, and so one way of adding this information to the models is

to use tagged values.

10-02-2024 SUVOBRATA SARKAR 164

 Graphically, a tagged value is rendered as a string enclosed by brackets,

which is placed below the name of another model element. The string

consists of a name (the tag), a separator (the symbol =), and a value (of

the tag) (see figure below).

10-02-2024 SUVOBRATA SARKAR 165

Constraints

 Constraints are properties for specifying semantics and/or conditions that must be

held true at all times for the elements of a model. They allow you to extend the

semantics of a UML building block by adding new rules, or modifying existing

ones.

 For example, when modelling hard real time systems it could be useful to adorn the

models with some additional information, such as time budgets and deadlines. By

making use of constraints these timing requirements can easily be captured.

 Graphically, a constraint is rendered as a string enclosed by brackets, which is

placed near the associated element(s), or connected to the element(s) by dependency

relationships. This notation can also be used to adorn a model element’s basic

notation, in order to visualise parts of an element’s specification that have no

graphical cue.

10-02-2024 SUVOBRATA SARKAR 166

CLASS DIAGRAMS

 The class diagram is a static diagram. It represents the static view of an application.

 Class diagram is not only used for visualizing, describing and documenting different

aspects of a system but also for constructing executable code of the software

application.

 The class diagram describes the attributes and operations of a class and also the

constraints imposed on the system.

 The class diagrams are widely used in the modelling of object oriented systems because

they are the only UML diagrams which can be mapped directly with object oriented

languages.

 The class diagram shows a collection of classes, interfaces, associations, collaborations

and constraints. It is also known as a structural diagram.

10-02-2024 SUVOBRATA SARKAR 167

PURPOSE

Analysis and design of the static view of an application.

Describe responsibilities of a system.

Base for component and deployment diagrams.

Forward and reverse engineering.

10-02-2024 SUVOBRATA SARKAR 168

APPLICATION OF CLASS DIAGRAMS

Describing the static view of the system.

Showing the collaboration among the elements of the static

view.

Describing the functionalities performed by the system.

Construction of software applications using object oriented

languages.

10-02-2024 SUVOBRATA SARKAR 169

STEPS FOR DRAWING CLASS DIAGRAMS

Identify the various objects in the system.

Group the objects with similar properties and semantics into a class.

Identify the responsibilities, operations and attributes associated with

each class.

Identify the relationship between classes.

Adjust class structures to improve inheritance.

Model the class diagram suitably by showing classes and their

interrelationships.

10-02-2024 SUVOBRATA SARKAR 170

CLASS DIAGRAM CONCEPTS

The name of the class diagram should be meaningful to describe the

aspect of the system.

Each element and their relationships should be identified in advance.

Responsibility (attributes and methods) of each class should be clearly

identified.

For each class minimum number of properties should be specified.

Because unnecessary properties will make the diagram complicated.

Use notes whenever required to describe some aspect of the diagram.

Because at the end of the drawing it should be understandable to the

developer/coder.

10-02-2024 SUVOBRATA SARKAR 171

ADVANCED CLASSES

A classifier is a mechanism that has structural features (in the form of

attributes), as well as behavioural features (in the form of operations).

Classifiers include classes, interfaces, datatypes, signals, components,

nodes, use cases, and subsystems. Those modelling elements that can

have instances are called classifiers.

Every instance of a given classifier shares the same features. The most

important kind of classifier in UML is class.

10-02-2024 SUVOBRATA SARKAR 172

10-02-2024 SUVOBRATA SARKAR 173

10-02-2024 SUVOBRATA SARKAR 174

Visibility of a Classifier

Visibility indicates whether the attributes and operations of a classifier can be used by

any other classifiers. There are three levels of visibility in UML public, protected and

private.

10-02-2024 SUVOBRATA SARKAR 175

10-02-2024 SUVOBRATA SARKAR 176

Scope(Owner Scope) of a Classifier

 The owner scope of a feature(attribute/operations) specifies whether the

feature appears in each instance of the classifier or whether there is just

a single instance of the feature for all instances of the classifier. Two

kinds of owner scope – classifier scope and instance scope.

 An instance scope is an owner scope in which each instance of the

classifier holds its own value for the feature whereas classifier scope is

the one which have just one value of the feature for all instances of the

classifier. classifier scope is rendered(shown) by underlining the

feature’s name. No adornment means that the feature is instance scoped.

10-02-2024 SUVOBRATA SARKAR 177

Figure:3 shows the scope of a classifier

10-02-2024 SUVOBRATA SARKAR 178

Abstract, Root, Leaf and Polymorphic Elements

 Abstract classes are those that do not have any direct instances and is specified in

UML by writing its name in italics. A leaf class is a class that have no children and is

specified in UML by writing the property leaf below the class’s name. A root class is a

class that has no parents and is specified in UML by writing the property root below

the class’s name.

 An operation is polymorphic if it is specified with the same signature at different

places in the hierarchy of classes. Which operation to invoke is done polymorphically,

that is a match is determined at run time according to the type of the object.

10-02-2024 SUVOBRATA SARKAR 179

10-02-2024 SUVOBRATA SARKAR 180

For example, display and isInside are both polymorphic operations.

Furthermore, the operation Icon::display() is abstract, meaning that it is

incomplete and requires a child to supply an implementation of the

operation. In the UML, you specify an abstract operation by writing its

name in italics, just as you do for a class. By contrast, Icon::getID() is a

leaf operation as indicated by the property leaf. This means that the

operation is not polymorphic and may not be overridden.

10-02-2024 SUVOBRATA SARKAR 181

Multiplicity

The number of instances a class may have is called its multiplicity. Multiplicity applies to

attributes, as well. A class having single instance is called as a singleton class. It is indicated in

Figure below.

10-02-2024 SUVOBRATA SARKAR 182

Attributes

A class’s structural features are indicated by its attributes. The syntax of an attribute in

UML is [visibility] name [multiplicity] [: type] [= initial-value] [{property-string}].Some

legal attribute declarations are given in Table below:

10-02-2024 SUVOBRATA SARKAR 183

10-02-2024 SUVOBRATA SARKAR 184

Operations

 A class’s behavioral features are indicated by its operations. The

UML distinguishes between operation and method.

 An operation specifies a service that can be requested from any

object of the class to affect behavior; a method is an

implementation of an operation.

 The syntax of an operation in the UML is

[visibility] name [(parameter-list)][: return-type] [{property-

string}]

10-02-2024 SUVOBRATA SARKAR 185

Template Classes

 A template is a parameterized element. A template includes slots for classes,

objects, and values, and these slots serve as the template’s parameters.

Every templates should be instantiated first. Instantiation involves binding

these formal template parameters to actual ones. For a template class, the

result is a concrete class that can be used just like any ordinary class.

 The instantiation of a template class can be modelled in two ways.

First done implicitly, by declaring a class whose name provides the binding.

Second, explicitly by using a dependency stereotyped as bind, which specifies

that the source instantiates the target template using the actual parameters.

10-02-2024 SUVOBRATA SARKAR 186

10-02-2024 SUVOBRATA SARKAR 187

SAMPLE CLASS DIAGRAM FOR LIBRARY MANAGEMENT SYSTEM

10-02-2024 SUVOBRATA SARKAR 188

OBJECT DIAGRAMS & PACKAGES

 An object diagram shows a set of objects and their relationships at a point in time.

 An object diagram consists of the objects that collaborate, but without any of the

messages passed among them.

 An object diagram is essentially an instance of a class diagram or the static part of an

interaction diagram.

 Used to model the static design view or static process view of a system

 Object diagrams helps in modelling static data structures.

 Object diagrams commonly contain – Objects & Links.

Object diagrams are derived from class diagrams so object diagrams are dependent

upon class diagrams.

10-02-2024 SUVOBRATA SARKAR 189

 Object diagrams represent an instance of a class diagram. The basic

concepts are similar for class diagrams and object diagrams. Object

diagrams also represent the static view of a system but this static view is

a snapshot of the system at a particular moment.

 Object diagrams are used to render a set of objects and their

relationships as an instance.

 Object diagram is similar to class diagram. The difference is that a class

diagram represents an abstract model consisting of classes and their

relationships. But an object diagram represents an instance at a

particular moment which is concrete in nature.

10-02-2024 SUVOBRATA SARKAR 190

PURPOSE

Forward and reverse engineering.

Object relationships of a system

Static view of an interaction.

 Understand object behaviour and their relationship from

practical perspective

Making the prototype of a system.

Modelling complex data structures.

Understanding the system from practical perspective.

10-02-2024 SUVOBRATA SARKAR 191

MODELLING OBJECT STRUCTURES

To model an object structure,

 Identify the mechanism you’d like to model. A mechanism represents some function or

behaviour of the part of the system you are modelling that results from the interaction

of a society of classes, interfaces, and other things.

For each mechanism, identify the classes, interfaces, and other elements that participate

in this collaboration; identify the relationships among these things, as well.

Consider one scenario that walks through this mechanism. Freeze that scenario at a

moment in time, and render each object that participates in the mechanism.

Expose the state and attribute values of each such object, as necessary, to understand

the scenario.

 Similarly, expose the links among these objects, representing instances of associations

among them.

10-02-2024 SUVOBRATA SARKAR 192

OBJECT DIAGRAM EXAMPLE

10-02-2024 SUVOBRATA SARKAR 193

OBJECT DIAGRAM EXAMPLE - Company

10-02-2024 SUVOBRATA SARKAR 194

PACKAGES

A mechanism for organizing elements into groups

Package name must be unique within its enclosing package

Package must have a name that distinguishes it from other packages

Two naming mechanism simple name, path name (prefixed by the

name of the package in which that package lives).

Package may contain classes, interfaces, components, nodes,

collaborations, use cases, diagrams, and even other packages

Package forms a namespace(every element in a package can be

identified uniquely eg:P1:: Queue and P2:: Queue are different)

10-02-2024 SUVOBRATA SARKAR 195

Contents of a package can be shown textually or graphically as shown below.

10-02-2024 SUVOBRATA SARKAR 196

Visibility : +, -, #

1. Public elements (denoted by +) are visible outside the packages

also.

2. Protected elements (denoted by #) are visible only to packages that

inherit from another package

3. Private elements (denoted by -) are not visible outside the package.

Fully qualified name example Client::OrderForm.

Two stereotypes import and access– both specify that the source

package has access to the contents of the target. Import adds contents

to source, so chances of name clashes, access doesn’t add contents.

These are non transitive.

10-02-2024 SUVOBRATA SARKAR 197

10-02-2024 SUVOBRATA SARKAR 198

Importing and Exporting

 Importing means accessing the elements of the source by the

target. It can be done by using the stereotype <<import>>. It’s a

one way process. It’s non transitive. if A’s package imports B’s

package, A can now see B, although B cannot see A. Importing

grants a one-way permission for the elements in one package to

access the elements in another package.

 Exports are the public parts of a package. It’s also non-

transitive.

10-02-2024 SUVOBRATA SARKAR 199

10-02-2024 SUVOBRATA SARKAR 200

Generalization
 In Generalization the specialized packages inherit the public and protected elements of the more

general package.

10-02-2024 SUVOBRATA SARKAR 201

UML defines five standard stereotypes that apply to packages.

1. facade – Specifies a package that is only a view on some other package

2. framework – Specifies a package consisting mainly of patterns

3. stub – Specifies a package that serves as a proxy for the public contents of

another package.

4. subsystem – Specifies a package representing an independent part of the

entire system being modeled.

5. system – Specifies a package representing the entire system being modelled.

Distinction between classes and packages:

• Classes are abstractions of things found in a problem or solution; packages are

mechanisms we use to organize the things in your model. Packages have no

identity, classes do have identity through instances.

10-02-2024 SUVOBRATA SARKAR 202

Modelling Groups of Elements

To model groups of elements,

Scan the modelling elements in a particular architectural view and look for

clumps defined by elements that are conceptually or semantically close to one

another.

Surround each of these clumps in a package.

For each package, distinguish which elements should be accessible outside the

package. Mark them public, and all others protected or private. When in doubt,

hide the element.

Explicitly connect packages that build on others via import dependencies.

 In the case of families of packages, connect specialized packages to their more

general part via generalizations

10-02-2024 SUVOBRATA SARKAR 203

Modelling Architectural Views

To model architectural views,

 Identify the set of architectural views that are significant in the context of your

problem. In practice, this typically includes a design view, a process view, an

implementation view, a deployment view, and a use case view.

Place the elements (and diagrams) that are necessary and sufficient to visualize,

specify, construct, and document the semantics of each view into the appropriate

package.

As necessary, further group these elements into their own packages.

There will typically be dependencies across the elements in different views. So, in

general, let each view at the top of a system be open to all others at that level.

10-02-2024 SUVOBRATA SARKAR 204

INTERFACES, TYPES & ROLES

INTERFACE

An interface is a collection of operations that are used

to specify a service of a class or a component.

 Graphically, an interface is rendered (represented) as a

circle; in its expanded form, an interface may be

rendered as a stereotyped class (a class with stereotype

interface)

10-02-2024 SUVOBRATA SARKAR 205

Interface Diagram

10-02-2024 SUVOBRATA SARKAR 206

To distinguish an interface from a class, prepend an ‘I’ to every

interface name.

Operations in an interface may be adorned with visibility properties,

concurrency properties, stereotypes, tagged values, and constraints.

Interface don’t have attributes.

Interfaces span model boundaries and it doesn’t have direct instances.

An interface may participate in generalization, association, dependency

and realization relationships.

Interfaces may also be used to specify a contract for a use case or

subsystem

10-02-2024 SUVOBRATA SARKAR 207

 An interface name must be unique within its enclosing package. Two

naming mechanism; a simple name (only name of the interface), a path

name is the interface name prefixed by the name of the package in which

that interface lives represented in Figure below.

10-02-2024 SUVOBRATA SARKAR 208

TYPE

A type is a stereotype of a class used to specify a domain of

objects, together with the operations (but not the methods)

applicable to the object of that type.

To distinguish a type from an interface or a class, prepend a

‘T’ to every type. Stereotype type is used to formally model

the semantics of an abstraction and its conformance to a

specific interface.

10-02-2024 SUVOBRATA SARKAR 209

ROLE

 A role names (indicates) a behaviour of an entity participating in a particular context.

Or, a role is the face that an abstraction presents to the world.

 For example, consider an instance of the class Person. Depending on the context,

that Person instance may play the role of Mother, Comforter, PayerOfBills,

Employee, Customer, Manager, Pilot, Singer, and so on.

 When an object plays a particular role, it presents a face to the world, and clients that

interact with it expect a certain behaviour depending on the role that it plays at the

time.

 For example, an instance of Person in the role of Manager would present a different

set of properties than if the instance were playing the role of Mother.

10-02-2024 SUVOBRATA SARKAR 210

Figure below indicates a role employee played by person and is

represented statically there.

10-02-2024 SUVOBRATA SARKAR 211

INTERACTION DIAGRAMS

Interaction diagram describe some type of interactions among the

different elements in the model. So this interaction is a part of dynamic

behaviour of the system.

This interactive behaviour is represented in UML by two diagrams known

as Sequence diagram and Collaboration diagram. The basic purposes of

both the diagrams are similar.

Sequence diagram emphasizes on time sequence of messages and

collaboration diagram emphasizes on the structural organization of the

objects that send and receive messages.

10-02-2024 SUVOBRATA SARKAR 212

Application of interaction diagrams

To model flow of control by time sequence.

To model flow of control by structural organizations.

For forward engineering.

For reverse engineering.

 Purpose of Interaction diagrams:

To capture dynamic behaviour of a system.

To describe the message flow in the system.

To describe structural organization of the objects.

To describe interaction among objects.

10-02-2024 SUVOBRATA SARKAR 213

SEQUENCE DIAGRAM

A sequence diagram shows elements as they interact over time, showing an

interaction or interaction instance.

Sequence diagrams are organized along two axes:

1. The horizontal axis shows the elements that are involved in the interaction. The

elements on the horizontal axis may appear in any order.

2. The vertical axis represents time proceeding down the page.

Sequence diagrams are made up of a number of elements, including class roles,

specific objects, lifelines, and activations. All of these are described in the following

subsections.

10-02-2024 SUVOBRATA SARKAR 214

Class roles

In a sequence diagram, a class role is shown using the notation for a class

as defined in previously, but the class name is preceded by a forward

slash followed by the name of the role that objects must conform to in

order to participate within the role, followed by a colon.

Other classes may also be shown as necessary, using the notation for

classes, Class roles and other classes are used for specification-level

collaborations communicated using sequence diagrams.

10-02-2024 SUVOBRATA SARKAR 215

Following figure shows the projectOrganization class role as well

as the Project and Report classes.

10-02-2024 SUVOBRATA SARKAR 216

Lifelines

A lifeline, shown as a vertical dashed line from an element, represents the

existence of the element over time. Figure B shows lifelines for the class

role (projectOrganization) and classes (Project and Report) in Figure A.

10-02-2024 SUVOBRATA SARKAR 217

Activations

 An optional activation, shown as a tall, thin rectangle on a lifeline, represents the period

during which an element is performing an operation. The top of the rectangle is aligned with

the initiation time, and the bottom is aligned with the completion time. Figure C shows

activations for the class roles in Figure A, where all the elements are simultaneously

performing operations.

10-02-2024 SUVOBRATA SARKAR 218

COMMUNICATION / MESSAGING

 In a sequence diagram, a communication, message, or stimulus is shown as a

horizontal solid arrow from the lifeline or activation of a sender to the lifeline or

activation of a receiver.

 In the UML, communication is described using the following UML syntax:

[guard] *[iteration]sequence_number : return_variable :=

operation_name(argument_list)

in which:

guard –

Is optional and indicates a condition that must be satisfied for the communication to be sent or occur. The

square brackets are removed when no guard is specified.

Iteration-

Is optional and indicates the number of times the communication is sent or occurs. The asterisk and square

brackets are removed when no iteration is specified.

10-02-2024 SUVOBRATA SARKAR 219

sequence_number

Is an optional integer that indicates the order of the communication. The succeeding colon is

removed when no sequence number is specified. Because the vertical axis represents time

proceeding down the page on a sequence diagram, a sequence number is optional.

return_variable

Is optional and indicates a name for the value returned by the operation. If you choose not to show

a return variable, or the operation does not return a value, you should also omit the succeeding

colon and equal sign.

operation_name

Is the name of the operation to be invoked.

argument_list

Is optional and is a comma-separated list that indicates the arguments passed to the operation.

Each parameter may be an explicit value or a return variable from a preceding communication. If an

operation does not require any arguments, the parentheses are left empty.

10-02-2024 SUVOBRATA SARKAR 220

In some ways, a sequence diagram is like a stack trace of object messages.

Below is a sample sequence diagram

10-02-2024 SUVOBRATA SARKAR 221

 The Sequence diagram allows the person reading the documentation to follow the

flow of messages from each object. The vertical lines with the boxes on top

represent instances of the classes (or objects).

 The label to the left of the colon is the instance and the label to the right of the

colon is the class. The horizontal arrows are the messages passed between the

instances and are read from top to bottom.

 In the above example a customer (user) depositing money into MyAccount which

is an instance of Class SavingsAccount. Then MyAccount object Validates the

account by asking the Bank object, MyBank to ValidateAccount. Finally, the

Customer Asks the ATM object for a Receipt by calling the ATM‘s operation

GetReceipt.

 The white rectangle indicate the scope of a method or set of methods occurring on

the Object My Bank. The dotted line is a return from the method ValidateAccount.

10-02-2024 SUVOBRATA SARKAR 222

TYPES OF MESSAGING

SYNCHRONOUS MESSAGING
Assumes that a return is needed.

Sender waits for the return before proceeding with any other activity

Represented as a full arrow head

 Return messages are dashed arrows

10-02-2024 SUVOBRATA SARKAR 223

ASYNCHRONOUS MESSAGING

Does not wait for a return message

Exemplified by signals

Sender only responsible for getting the message to the

receiver

Usually modelled using a solid line and a half

arrowhead to distinguish it from the full arrowhead of

the synchronous message

10-02-2024 SUVOBRATA SARKAR 224

10-02-2024 SUVOBRATA SARKAR 225

SELF REFERENCE MESSAGE

 A self-reference message is a message where the sender and receiver are one and the same object.

 In a self-reference message the object refers to itself when it makes the call.

 message is only the invocation of some procedure that should be executed.

10-02-2024 SUVOBRATA SARKAR 226

TIMED MESSAGES

Messages may have user-defined time attributes, such as

sentTime or receivedTime

User-defined time attributes must be associated with message

numbers

Instantaneous messages are modeled with horizontal arrows

Messages requiring a significant amount of time, it is possible

to slant the arrow from the tail down to the head from Object

Creation and Destruction

10-02-2024 SUVOBRATA SARKAR 227

 For messages 1, 2 and 3 the time required for their execution is considered equal to zero.

 Message 4 requires more time (time > 0) for its execution.

10-02-2024 SUVOBRATA SARKAR 228

CONDITIONAL MESSAGING

 In a sequence diagram, conditionality (which involves communicating

one set of messages or stimuli rather than another set of messages or

stimuli) within a generic-form interaction is shown as multiple

communications leaving a single point on a lifeline or activation, with

the communications having mutually exclusive guard expressions.

 A lifeline may also split into two or more lifelines to show how a single

element would handle multiple incoming communications, and the

lifelines would subsequently merge together again.

10-02-2024 SUVOBRATA SARKAR 229

 Following figure shows the Generate Project-Status Report interaction

and collaboration description where the GenerateProject-

StatusReportHandler class requests that the projectOrganization class

role indicate that the project is empty if the project is a newly created or

unpopulated project, and the GenerateProject-StatusReportHandler

class requests that the projectOrganization class role continue

generating information for the report element if the project is not a

newly created or populated project. In this figure, only the first

communication is shown for actually generating the report. If there are

no other communications for actually generating the report, the

GenerateReport communication may go to the same lifeline as the

OutputEmptyProject communication. we use different lifelines in the

figure because each lifeline represents a different path of execution.

10-02-2024 SUVOBRATA SARKAR 230

10-02-2024 SUVOBRATA SARKAR 231

Object Creation: If the object is created during the sequence execution it should appear

somewhere below the top of the diagram.

10-02-2024 SUVOBRATA SARKAR 232

Object Destruction: If the object is deleted during the sequence execution,

place an X at the point in the object lifeline when the termination occurs.

10-02-2024 SUVOBRATA SARKAR 233

COLLABORATION DIAGRAM

A collaboration diagram shows elements as they interact over time and how they

are related. That is, it shows a collaboration or collaboration instance.

While sequence diagrams are time-oriented and emphasize the overall flow of an

interaction, collaboration diagrams are time- and space oriented and emphasize the

overall interaction, the elements involved, and their relationships.

Sequence diagrams are especially useful for complex interactions, because you read

them from top to bottom. Collaboration diagrams are especially useful for

visualizing the impact of an interaction on the various elements, because you can

place an element on a diagram and immediately see all the other elements with

which it interacts.

10-02-2024 SUVOBRATA SARKAR 234

 A collaboration diagram shows the interactions organized around the structure

of a model, using either:

a) Classifiers (e.g. classes) and associations, or

b) Instances (e.g. objects) and links.

 Collaboration diagram is an interaction diagram which is similar to the sequence

diagram. It reveals both structural and dynamic aspects of a collaboration. It also

reveals the need for the associations in the class diagram

 A collaboration diagram shows a graph of either instances linked to each other

or classifiers and associations.

 Navigability is shown using arrow heads on the lines representing links.

 An arrow next to a line indicates a stimuli or message flowing in the given

direction.

 The order of interaction is given with a number.

10-02-2024 SUVOBRATA SARKAR 235

Conditions can be represented in collaboration diagram as shown below.

10-02-2024 SUVOBRATA SARKAR 236

10-02-2024 SUVOBRATA SARKAR 237

OBJECT CREATION AND DESTRUCTION

A communication that creates an element and a communication that destroys an element are simply

shown like any other communication.

 For example.

10-02-2024 SUVOBRATA SARKAR 238

10-02-2024 SUVOBRATA SARKAR 239

10-02-2024 SUVOBRATA SARKAR 240

ACTIVITY DIAGRAM

Activity diagram is another important diagram in UML to describe

dynamic aspects of the system.

Activity diagram is basically a flow chart to represent the flow form one

activity to another activity. The activity can be described as an operation of

the system.

So the control flow is drawn from one operation to another. This flow can

be sequential, branched or concurrent.

Activity diagrams deals with all type of flow control by using different

elements like fork, join etc.

10-02-2024 SUVOBRATA SARKAR 241

Activity Diagram Symbols

The start symbol represents the beginning of a process or workflow in an activity diagram.

It can be used by itself or with a note symbol that explains the starting point.

The activity symbol is the main component of an activity diagram. These shapes

indicate the activities that make up a modelled process.

The connector symbol is represented by arrowed lines that show the directional flow, or

control flow, of the activity. An incoming arrow starts a step of an activity; once the step is

completed, the flow continues with the outgoing arrow.

The join symbol, or synchronization bar, is a thick vertical or horizontal line. It

combines two concurrent activities and re-introduces them to a flow where only one

activity occurs at a time

10-02-2024 SUVOBRATA SARKAR 242

A fork is symbolized with multiple arrowed lines from a join. It splits a single activity

flow into two concurrent activities.

The decision symbol is a diamond shape; it represents the branching or merging of various

flows with the symbol acting as a frame or container.

The note symbol allows the diagram creators or collaborators to communicate additional

messages that don't fit within the diagram itself.

The receive signal symbol demonstrates the acceptance of an event. After the event is

received, the flow that comes from this action is completed.

10-02-2024 SUVOBRATA SARKAR 243

The send signal symbol means that a signal is being sent to a receiving activity, as

seen above.

The flow final symbol shows the ending point of a process' flow. While a flow final symbol

marks the end of a process in a single flow, an end symbol represents the completion of all

flows in an activity.

The end symbol represents the completion of a process or workflow.

10-02-2024 SUVOBRATA SARKAR 244

PURPOSE OF ACTIVITY DIAGRAM

Draw the activity flow of a system.

Describe the sequence from one activity to another.

Describe the parallel, branched and concurrent flow of the system.

10-02-2024 SUVOBRATA SARKAR 245

APPLICATIONS OF ACTIVITY DIAGRAM

Modelling work flow by using activities.

Modelling business requirements.

High level understanding of the system's functionalities.

 Investigate business requirements at a later stage.

10-02-2024 SUVOBRATA SARKAR 246

10-02-2024 SUVOBRATA SARKAR 247

SWIMLANES

 In activity diagrams, it is often useful to model the activity's procedural flow of

control between the objects (persons, organizations, or other responsible entities)

that actually execute the action. To do this, you can add swimlanes to the activity

diagram (swimlanes are named for their resemblance to the straight-line

boundaries between two or more competitors at a swim meet).

To put swimlanes on an activity diagram, use vertical columns. For each object

that executes one or more actions, assign a column its name, placed at the top of

the column. Then place each action associated with an object in that object's

swimlane.

A process flow or workflow diagram does not have to use swimlanes. However,

since swimlanes communicate additional information about who performs the

activity or when it takes place, it’s typically a preferred best practice to include

them.

10-02-2024 SUVOBRATA SARKAR 248

Similarly, a swimlane diagram can use only one set of swimlanes

(either vertical swimlanes or horizontal swimlanes).

In the UML standard, the activity diagram flows from top to bottom

and veritcal swimlanes are most commonly used.

One of the more common choices used by creators of swimlane

diagrams is to define the roles which perform each activity within

horizontal swimlanes and define the process stages in which the

activity occurs within vertical swimlanes.

SWIMLANES

10-02-2024 SUVOBRATA SARKAR 249

10-02-2024 SUVOBRATA SARKAR 250

USE CASE DIAGRAM

 A use case diagram at its simplest is a representation of a user's

interaction with the system that shows the relationship between the

user and the different use cases in which the user is involved.

 A use case diagram can identify the different types of users of a

system and the different use cases

 Use case diagrams consists of actors, use cases and their

relationships. The diagram is used to model the system/subsystem of

an application.

10-02-2024 SUVOBRATA SARKAR 251

A single use case diagram captures a particular functionality of a system. So to model

the entire system numbers of use case diagrams are used.

A use case diagram does not show the detail of the use cases: it only summarizes some

of the relationships between use cases, actors, and systems. In particular, the diagram

does not show the order in which steps are performed to achieve the goals of each use

case.

A use case diagram contains four components.

 The boundary, which defines the system of interest in relation to the world around

it.

 The actors, usually individuals involved with the system defined according to their

roles.

 The use cases, which the specific roles are played by the actors within and around

the system.

 The relationships between and among the actors and the use cases.

10-02-2024 SUVOBRATA SARKAR 252

An actor is a class of person, organization, device, or external

software component that interacts with your system. Example

actors are Customer, Restaurant, Temperature Sensor, Credit

card Authorizer.

A use case represents the actions that are performed by one or

more actors in the pursuit of a particular goal. Example use cases

are Order product, Update Menu, Process Payment.

10-02-2024 SUVOBRATA SARKAR 253

Purpose

The purpose of use case diagram is to capture the dynamic aspect of a

system.

Use case diagrams are used to gather the requirements of a system

including internal and external influences. These requirements are mostly

design requirements. So when a system is analysed to gather its

functionalities use cases are prepared and actors are identified.

Used to get an outside view of a system.

Identify external and internal factors influencing the system.

Show the interacting among the requirements are actors.

10-02-2024 SUVOBRATA SARKAR 254

How to draw Use Case Diagram?

 Identify the following regarding the system:

 Functionalities to be represented as an use case

 Actors

 Relationships among the use cases and actors.

The name of a use case is very important. So the name should be chosen in such a way

so that it can identify the functionalities performed.

Give a suitable name for actors.

Show relationships and dependencies clearly in the diagram.

Do not try to include all types of relationships. Because the main purpose of the

diagram is to identify requirements.

Use note whenever required to clarify some important points.

10-02-2024 SUVOBRATA SARKAR 255

Application areas of Use Case Diagrams

Requirement analysis and high level design.

Model the context of a system.

Reverse engineering.

Forward engineering

10-02-2024 SUVOBRATA SARKAR 256

NOTATIONS USED IN USE CASE DIAGRAMS

10-02-2024 SUVOBRATA SARKAR 257

USE CASE

DIAGRAM

FOR ATM

10-02-2024 SUVOBRATA SARKAR 258

USE CASE

DIAGRAM

FOR

LIBRARY

MANAGEME

NT SYSTEM

(LMS)

10-02-2024 SUVOBRATA SARKAR 259

STATE CHART DIAGRAM

State chart diagram is simply a presentation of a state machine which

shows the flow of control from state to state.

State chart diagrams are important for constructing executable systems

through forward and reverse engineering.

State chart diagrams are useful in modelling the lifetime of an object

State chart diagrams commonly contain – Simple states and composite

states, Transitions- including events and actions.

Used for modelling the dynamic aspects of systems.

Graphically, a state chart diagram is a collection of vertices and arcs.

10-02-2024 SUVOBRATA SARKAR 260

PURPOSE

To model dynamic aspect of a system.

To model life time of a reactive system.

To describe different states of an object during its life time.

Define a state machine to model states of an object.

10-02-2024 SUVOBRATA SARKAR 261

APPLICATIONS

To model object states of a system.

To model reactive system. Reactive system consists of reactive

objects.

To identify events responsible for state changes.

Forward and reverse engineering.

10-02-2024 SUVOBRATA SARKAR 262

TERMS / NOTATIONS

A state is a condition or situation in the life of an object during which it satisfies

some condition, performs some activity, or waits for some event.

An event in the context of state machines is an occurrence of a stimulus that can

trigger a state transition.

A transition is a relationship between two states indicating that an object in the first

state will perform certain actions and enter the second state when a specified event

occurs and specified conditions are satisfied.

An activity is ongoing non-atomic execution within a state machine.

An action is an executable atomic computation that results in a change in state of

the model or the return of a value.

A reactive or event-driven object is one whose behaviour is best characterized by its

response to events dispatched from outside its context

10-02-2024 SUVOBRATA SARKAR 263

States

A state is a condition or situation during the life of an

object during which it satisfies some condition, performs

some activity, or waits for some event.

An object remains in a state for a finite amount of time.

For example, a Heater in a home might be in any of four

states: Idle, Activating, Active, and ShuttingDown.

A state name must be unique within its enclosing state.

10-02-2024 SUVOBRATA SARKAR 264

A state has five parts:

1. Name, Entry/exit actions, Internal transitions – Transitions that are

handled without causing a change in state,

2. Substates – nested structure of a state, involving disjoint

(sequentially active) or concurrent (concurrently active) substates,

3. Deferred events – A list of events that are not handled in that state

but, rather, are postponed and queued for handling by the object in

another state

Initial state indicates the default starting place for the state machine or

sub state and is represented as a filled black circle

Final state indicates that the execution of the state machine or the

enclosing state has been completed and is represented as a filled black

circle surrounded by an unfilled circle.

10-02-2024 SUVOBRATA SARKAR 265

10-02-2024 SUVOBRATA SARKAR 266

Transitions

A transition is a relationship between two states indicating that an object in

the first state will perform certain actions and enter the second state when a

specified event occurs and specified conditions are satisfied.

Transition fires means change of state occurs. Until transition fires, the object

is in the source state; after it fires, it is said to be in the target state.

A transition has five parts:

1. Source state – The state affected by the transition.

2. Event trigger – a stimulus that can trigger a source state to fire on

satisfying guard condition.

3. Guard condition – Boolean expression that is evaluated when the

transition is triggered by the reception of the event trigger.

10-02-2024 SUVOBRATA SARKAR 267

4. Action – An executable atomic computation that may directly act on the

object that owns the state machine, and indirectly on other objects that are

visible to the object.

5. Target state – The state that is active after the completion of the

transition.

A transition may have multiple sources as well as multiple targets

A self-transition is a transition whose source and target states are the same

10-02-2024 SUVOBRATA SARKAR 268

10-02-2024 SUVOBRATA SARKAR 269

Event Trigger

An event in the context of state machines is an occurrence of a stimulus that can

trigger a state transition.

Events may include signals, calls, the passing of time or a change in state.

An event – signal or a call – may have parameters whose values are available to the

transition, including expressions for the guard condition and action.

An event trigger may be polymorphic.

10-02-2024 SUVOBRATA SARKAR 270

Guard condition

A guard condition is rendered as a Boolean expression enclosed in

square brackets and placed after the trigger event.

A guard condition is evaluated only after the trigger event for its

transition occurs.

A guard condition is evaluated just once for each transition at the time

the event occurs, but it may be evaluated again if the transition is

retriggered.

10-02-2024 SUVOBRATA SARKAR 271

Action

An action is an executable atomic computation i.e, it cannot be

interrupted by an event and runs to completion.

Actions may include operation calls, the creation or destruction of

another object, or the sending of a signal to an object.

An activity may be interrupted by other events.

10-02-2024 SUVOBRATA SARKAR 272

Advanced States and Transitions

10-02-2024 SUVOBRATA SARKAR 273

 Entry and Exit Actions

 Entry Actions are those actions that are to be done upon entry of a state and are

shown by the keyword event ‘entry’ with an appropriate action.

 Exit Actions are those actions that are to be done upon exit from a state marked by

the keyword event ‘exit’, together with an appropriate action.

 Internal Transitions

 Internal Transitions are events that should be handled internally without leaving the

state.

 Internal transitions may have events with parameters and guard conditions.

 Activities

 Activities make use of object’s idle time when inside a state. ‘do’ transition is used to

specify the work that’s to be done inside a state after the entry action is dispatched.

10-02-2024 SUVOBRATA SARKAR 274

Deferred Events

 A deferred event is a list of events whose occurrence in the state is postponed until a

state in which the listed events are not deferred becomes active, at which time they

occur and may trigger transitions as if they had just occurred. A deferred event is

specified by listing the event with the special action ‘defer’.

Sub-states

 A sub-state is a state that’s nested inside another one.

 A state that has sub-states is called a composite state.

 A composite state may contain either concurrent (orthogonal) or sequential

(disjoint) sub-states.

 Sub-states may be nested to any level.

10-02-2024 SUVOBRATA SARKAR 275

Sequential Sub-states

Sequential sub-states are those sub-states in which an event common to the

composite states can easily be exercised by each states inside it at any time.

Sequential sub-states partition the state space of the composite state into

disjoint states.

A nested sequential state machine may have at most one initial state and

one final state.

10-02-2024 SUVOBRATA SARKAR 276

10-02-2024 SUVOBRATA SARKAR 277

History States

A history state allows composite state that contains sequential substates to

remember the last substate that was active in it prior to the transition from

the composite state.

A shallow history state is represented as a small circle containing the symbol

H.

The first time entry to a composite state doesn’t have any history and the

process for collecting history.

10-02-2024 SUVOBRATA SARKAR 278

10-02-2024 SUVOBRATA SARKAR 279

The symbol H designates a shallow history, which remembers

only the history of the immediate nested state machine.

The symbol H* designates deep history, which remembers down

to the innermost nested state at any depth.

When only one level of nesting, shallow and deep history states

are semantically equivalent.

10-02-2024 SUVOBRATA SARKAR 280

Concurrent Substates

Concurrent substates specify two or more state machines that

execute in parallel in the context of the enclosing object.

Execution of these concurrent substates continues in parallel.

These substates waits for each other to finish to joins back into

one flow.

A nested concurrent state machine does not have an initial, final,

or history state.

10-02-2024 SUVOBRATA SARKAR 281

10-02-2024 SUVOBRATA SARKAR 282

Modelling the Lifetime of an Object

Set the context for the state machine, whether it is a class, a use case, or the system as a

whole.

a) If the context is a class or a use case, collect the neighbouring classes, including any

parents of the class and any classes reachable by associations or dependences. These

neighbours are candidate targets for actions and are candidates for including in guard

conditions.

b) If the context is the system as a whole, narrow your focus to one behaviour of the

system. Theoretically, every object in the system may be a participant in a model of the

system’s lifetime, and except for the most trivial systems, a complete model would be

intractable.

 Establish the initial and final states for the object. To guide the rest of your model,

possibly state the pre- and post-conditions of the initial and final states, respectively.

10-02-2024 SUVOBRATA SARKAR 283

Decide on the events to which this object may respond. If already

specified, you’ll find these in the object’s interfaces; if not already

specified, you’ll have to consider which objects may interact with the

object in your context, and then which events they may possibly dispatch.

Starting from the initial state to the final state, lay out the top-level states

the object may be in. Connect these states with transitions triggered by the

appropriate events. Continue by adding actions to these transitions.

Identify any entry or exit actions (especially if you find that the idiom

they cover is used in the state machine).

Expand these states as necessary by using sub-states.

10-02-2024 SUVOBRATA SARKAR 284

Check that all events mentioned in the state machine match events expected

by the interface of the object. Similarly, check that all events expected by

the interface of the object are handled by the state machine. Finally, look to

places where you explicitly want to ignore events.

Check that all actions mentioned in the state machine are sustained by the

relationships, methods, and operations of the enclosing object.

Trace through the state machine, either manually or by using tools, to check

it against expected sequences of events and their responses. Be especially

diligent in looking for unreachable states and states in which the machine

may get stuck.

After rearranging your state machine, check it against expected sequences

again to ensure that you have not changed the object’s semantics.

10-02-2024 SUVOBRATA SARKAR 285

For example, Figure

shows the state

machine for the

controller in a home

security system, which

is responsible for

monitoring various

sensors around the

perimeter of the house

10-02-2024 SUVOBRATA SARKAR 286

UML ARCHITECTURAL MODELLING

COMPONENT DIAGRAM

 It shows structural replaceable parts of the system. Its main

components are:

 components

 interfaces

 packages

10-02-2024 SUVOBRATA SARKAR 287

 Component diagrams are different in terms of nature and behaviour.

 Component diagrams are used to model physical aspects of a system.

 Physical aspects are the elements like physical components,

executables, libraries, files, documents etc. which resides in a node.

 So component diagrams are used to visualize the organization and

relationships among components in a system. These diagrams are also

used to make executable systems.

COMPONENT DIAGRAM

10-02-2024 SUVOBRATA SARKAR 288

Figure below shows a component diagram

10-02-2024 SUVOBRATA SARKAR 289

Component:
A component is a physical, replaceable part that conforms to and

provides the realization of a set of interfaces.

A component:

 Encapsulates the implementation of classifiers residing in it.

 Does not have its own features, but serves as a mere container

for its elements

 Are replaceable or substitutable parts of a system

10-02-2024 SUVOBRATA SARKAR 290

PURPOSE

Component diagram is a special kind of diagram in UML. The purpose is

also different from all other diagrams discussed so far. It does not describe

the functionality of the system but it describes the components used to

make those functionalities.

Component diagrams are used to visualize the physical components in a

system. These components are libraries, packages, files etc.

Component diagrams can also be described as a static implementation

view of a system. Static implementation represents the organization of the

components at a particular moment.

10-02-2024 SUVOBRATA SARKAR 291

A single component diagram cannot represent the entire system

but a collection of diagrams are used to represent the whole.

The purpose of the component diagram can be summarized as:

 Visualize the components of a system.

 Construct executables by using forward and reverse

engineering.

 Describe the organization and relationships of the components.

10-02-2024 SUVOBRATA SARKAR 292

How to draw Component Diagram?

Use a meaningful name to identify the component for which the

diagram is to be drawn.

 Prepare a mental layout before producing using tools.

 Use notes for clarifying important points.

10-02-2024 SUVOBRATA SARKAR 293

Where to use Component Diagrams?

Model the components of a system.

 Model database schema.

 Model executables of an application.

 Model system's source code.

10-02-2024 SUVOBRATA SARKAR 294

COMPONENT DIAGRAM FOR COMPUTER

10-02-2024 SUVOBRATA SARKAR 295

COMPONENT DIAGRAM FOR LMS

10-02-2024 SUVOBRATA SARKAR 296

DEPLOYMENT DIAGRAM

Deployment modelling is a specialized type of structural modelling

concerned with modelling the implementation environment of a system.

In contrast to modelling the components of a system, a deployment model

shows you the external resources that those components require.

Deployment modelling is applied during design activities to determine

how deployment activities will make the system available to its users; that

is, to determine the elements of the system on which deployment activities

will focus.

10-02-2024 SUVOBRATA SARKAR 297

Deployment

1. shows configuration of run-time processing nodes and the

components hosted on them

2. addresses the static deployment view of an architecture

3. is related to component diagram with nodes hosting one or more

components

4. essentially focus on a system‘s nodes, and include: nodes,

dependencies and associations relationships, components, packages

Nodes and Components

Components

 participate in the execution of a system.

 represent the physical packaging of otherwise logical elements

10-02-2024 SUVOBRATA SARKAR 298

Nodes

execute components

represent the physical deployment of components

The relationship deploys between a node and a component can be shown

using a dependency relationship.

Nodes can be organized:

In the same manner as classes and components.

By specifying dependency, generalization, association, aggregation, and

realization relationships among them.

The most common kind of relationship used among nodes is an association

representing a physical connection among them.

10-02-2024 SUVOBRATA SARKAR 299

A processor is a node that has processing capability. It can execute a

component.

A device is a node that has no processing capability (at least at the level

of abstraction showed).

Modelling Nodes Procedure

1. Identify the computational elements of the system‘s deployment view

and model each as a node.

2. Add the corresponding stereotype to the nodes

3. Consider attributes and operations that might apply to each node.

10-02-2024 SUVOBRATA SARKAR 300

DEPLOYMENT DIAGRAM OF ATM

10-02-2024 SUVOBRATA SARKAR 301

10-02-2024 SUVOBRATA SARKAR 302

PROCESS AND THREADS

 A process is a heavyweight flow that can execute concurrently with

other processes.

 A thread is a lightweight flow that can execute concurrently with other

threads within the same process.

 An active object is an object that owns a process or thread and can

initiate control activity.

 An active class is a class whose instances are active objects.

 Graphically, an active class is rendered as a rectangle with thick lines.

Processes and threads are rendered as stereotyped active class.

10-02-2024 SUVOBRATA SARKAR 303

10-02-2024 SUVOBRATA SARKAR 304

In a sequential system, there is a single flow of control. i.e, one thing, and

one thing only, can take place at a time.

In a concurrent system, there is multiple simultaneous flow of control i.e,

more than one thing can take place at a time.

Flow of Control

10-02-2024 SUVOBRATA SARKAR 305

Classes and Events

Active classes are just classes which represents an independent flow of control.

Active classes share the same properties as all other classes.

When an active object is created, the associated flow of control is started; when the

active object is destroyed, the associated flow of control is terminated.

Two standard stereotypes that apply to active classes are, <<process>> – Specifies a

heavyweight flow that can execute concurrently with other processes. (heavyweight

means, a thing known to the OS itself and runs in an independent address space)

<<thread>> – Specifies a lightweight flow that can execute concurrently with other

threads within the same process (lightweight means, known to the OS itself.)

All the threads that live in the context of a process are peers of one another.

10-02-2024 SUVOBRATA SARKAR 306

Communication
 In a system with both active and passive objects, there are four possible combinations

of interaction

First, a message may be passed from one passive object to another.

Second, a message may be passed from one active object to another.

 In inter-process communication there are two possible styles of communication. First,

one active object might synchronously call an operation of another. Second, one active

object might asynchronously send a signal or call an operation of another object .

A synchronous message is rendered as a full arrow and an asynchronous message is

rendered as a half arrow.

Third, a message may be passed from an active object to a passive object.

Fourth, a message may be passed from a passive object to an active one.

10-02-2024 SUVOBRATA SARKAR 307

10-02-2024 SUVOBRATA SARKAR 308

Synchronization

Synchronization means arranging the flow of controls of objects so that mutual

exclusion will be guaranteed.

 In object-oriented systems these objects are treated as a critical region.

Three approaches are there to handle synchronization:

1. Sequential – Callers must coordinate outside the object so that only one flow is in

the object at a time.

2. Guarded – multiple flow of control is sequential with the help of object’s guarded

operations. in effect it becomes sequential.

3. Concurrent – multiple flow of control is guaranteed by treating each operation as

atomic.

Synchronization are rendered in the operations of active classes with the help of

constraints.

10-02-2024 SUVOBRATA SARKAR 309

10-02-2024 SUVOBRATA SARKAR 310

Process Views

The process view of a system encompasses the threads and

processes that form the system’s concurrency and

synchronization mechanisms.

This view primarily addresses the performance, scalability,

and throughput of the system.

10-02-2024 SUVOBRATA SARKAR 311

Modelling Multiple Flows of Control

Identify the opportunities for concurrent action and reify each flow as an

active class. Generalize common sets of active objects into an active class.

Be careful not to over engineer the process view of your system by

introducing too much concurrency.

Consider a balanced distribution of responsibilities among these active

classes, then examine the other active and passive classes with which each

collaborates statically. Ensure that each active class is both tightly

cohesive and loosely coupled relative to these neighbouring classes and

that each has the right set of attributes, operations, and signals.

Capture these static decisions in class diagrams, explicitly highlighting

each active class.

10-02-2024 SUVOBRATA SARKAR 312

Consider how each group of classes collaborates with one another

dynamically. Capture those decisions in interaction diagrams.

Explicitly show active objects as the root of such flows. Identify each

related sequence by identifying it with the name of the active object.

Pay close attention to communication among active objects. Apply

synchronous and asynchronous messaging, as appropriate.

Pay close attention to synchronization among these active objects and

the passive objects with which they collaborate. Apply sequential,

guarded, or concurrent operation semantics, as appropriate.

10-02-2024 SUVOBRATA SARKAR 313

10-02-2024 SUVOBRATA SARKAR 314

Modelling Inter Process Communication (IPC)

To model inter process communication,

 Model the multiple flows of control.

 Consider which of these active objects represent processes and which

represent threads. Distinguish them using the appropriate stereotype.

 Model messaging using asynchronous communication; model remote

procedure calls using synchronous communication.

 Informally specify the underlying mechanism for communication by

using notes, or more formally by using collaborations.

10-02-2024 SUVOBRATA SARKAR 315

10-02-2024 SUVOBRATA SARKAR 316

Java Swing

 Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-

based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API

and entirely written in java.

 Unlike AWT, Java Swing provides platform-independent and lightweight

components.

 The javax.swing package provides classes for java swing API such as JButton,

JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

10-02-2024 SUVOBRATA SARKAR 317

Difference between AWT and Swing

SL No. AWT Swing

1. AWT components are platform-dependent. Java swing components are platform-independent.

2. AWT components are heavyweight Swing components are lightweight

3. AWT doesn't support pluggable look and feel Swing supports pluggable look and feel

4. AWT provides less components than Swing Swing provides more powerful components such as

tables, lists, scrollpanes, colorchooser, tabbedpane

etc.

5. AWT doesn't follows MVC(Model View Controller)

where model represents data, view represents presentation

and controller acts as an interface between model and

view.

Swing follows MVC.

10-02-2024 SUVOBRATA SARKAR 318

What is JFC?

The Java Foundation Classes (JFC) are a set of GUI components which simplify the

development of desktop applications.

Java Swing Examples

There are two ways to create a frame:

•By creating the object of Frame class (association)

•By extending Frame class (inheritance)

10-02-2024 SUVOBRATA SARKAR 319

Hierarchy of Java Swing classes

10-02-2024 SUVOBRATA SARKAR 320

Commonly used Methods of Component class

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int height) sets size of the component.

public void setLayout(LayoutManager m) sets the layout manager for the component.

public void setVisible(boolean b) sets the visibility of the component. It is by

default false.

10-02-2024 SUVOBRATA SARKAR 321

SOFTWARE ARCHITECTURE

Software architecture of a program or software system consist of various components

(modules) in that system, externally visible properties of those components and the inter-

relationship between those components.

 Software architectures provide high-level abstractions for representing structure, behavior, and

key properties of a software system. These abstractions are useful in describing to various

stakeholders complex, real-world problems in an understandable manner.

 Software architectures are described in terms of components, connectors, and configurations.

Architectural components describe the computations and state of a system; connectors describe

the rules of interaction among the components; finally, configurations define topologies of

components and connectors.

10-02-2024 SUVOBRATA SARKAR 322

DESIGN FRAMEWORKS

Architectural frameworks provide support for implementing, deploying, executing,

and evolving software architectures. A framework is a skeletal group of software

modules that may be tailored for building domain-specific applications, typically

resulting in increased productivity and faster time-to-market.

DESIGN PATTERN

 In software engineering, a design pattern is a general reusable solution to a

commonly occurring problem within a given context in software design. A design

pattern is not a finished design that can be transformed directly into code. It is a

description or template for how to solve a problem that can be used in many different

situations.

10-02-2024 SUVOBRATA SARKAR 323

DESIGN PATTERN (Contd…)

Design patterns can speed up the development process by providing tested, proven

development paradigms. Reusing design patterns helps to prevent subtle issues that can

cause major problems, and it also improves code readability for coders and architects

who are familiar with the patterns.

Design patterns were originally grouped into the categories: creational patterns,

structural patterns, and behavioural patterns, and described using the concepts of

delegation, aggregation, and consultation.

The documentation for a design pattern describes the context in which the pattern is

used, the forces within the context that the pattern seeks to resolve, and the suggested

solution.

Some of the commonly used architectural patterns are data-flow based architecture,

object –oriented architecture, layered system architecture, data-centred architecture

and call and return architecture.

10-02-2024 SUVOBRATA SARKAR 324

DATA FLOW ARCHITECTURE / PIPE AND FILTER STYLE

Data flow based architecture is mainly used in systems that accepts

some inputs and transform it into desired outputs by applying a series of

transformations.

Each component known as filter, transforms the data and sends this

transformed data to other filters for further processing using the

connector, known as pipe. Each filter works as an independent entity. A

pipe is a unidirectional channel which transports the data received on

one end to the other end. Pipe does not change the data in anyway; it

merely supplies data to the filter on the receiver end.

10-02-2024 SUVOBRATA SARKAR 325

In most cases, data flow architecture degenerates a batch sequential system. In this system, a batch of data

is accepted as input and then a series of sequential filters are applied to transform this data.

10-02-2024 SUVOBRATA SARKAR 326

 Example of this style is a Compiler which accepts High Level Language and

returns a machine dependent form.

10-02-2024 SUVOBRATA SARKAR 327

 Advantages of Data- Flow architecture:

 It supports reusability

 It is maintainable and modifiable.

 It supports concurrent execution

 Disadvantages of Data –Flow architecture

 It often degenerates to batch sequential system.

 It does not provide enough support for applications requires user

interaction

 It is difficult to synchronize two different, but related streams.

10-02-2024 SUVOBRATA SARKAR 328

LAYERED ARCHITECTURE

 In layered architecture, entire system is divided into various layers such

that, each layer performs a well- defined set of operations. These are

layers are arranged in hierarchical manner, each one built upon the one

below it.

 Each layer provides a set of services to the layer above it and acts as a

client to the layer below it.

 The interaction between layers is provided through protocols

(connectors) that define a set of rules to be followed during interaction.

10-02-2024 SUVOBRATA SARKAR 329

 Example of layered architectural style is ISO OSI Internet Protocol Suite, Operating

system layers etc.

10-02-2024 SUVOBRATA SARKAR 330

REPOSITORY VIEW / DATA CENTERED VIEW

A data centered architecture has two distinct components: a central data store

(central repository) and a collection of client software (data accessors).

The data store (database or file) represents the current state of the data and the client

software performs several operations like add, delete, update etc., on the data stored

in the central repository.

 It has two views:

 Repository view: The client who updates the central repository can determine the

access permission for various other clients, to view the same updated data.

 Black board view: Here the data store acts like a black board system in which the

data store is transformed into a black board that notifies the client software when

the data changes / updates.

10-02-2024 SUVOBRATA SARKAR 331

ADVANTAGES:

 Clients operate independently

of one another.

 Data repository is independent

of clients.

 It facilitates scalability.

 Supports modifiability.

10-02-2024 SUVOBRATA SARKAR 332

CLIENT – SERVER STYLE

 It is a variant of main program and subroutines concept, but the clients and

servers.

A server provides different services. A client uses services as (remote)

subroutines from one or more servers.

A general form of this architecture is n – tier architecture. In this style, a

client sends request to a server. But in order to service the request, the

server sends some request to another server. That is the server acts as a

client for the next tier. This hierarchy can continue for some levels,

providing a n-tier system.

A common example is 3 –tier architecture.

10-02-2024 SUVOBRATA SARKAR 333

CALL AND RETURN ARCHITECTURE

 This architecture enables to achieve a program structure that is

relatively easy to modify and scale. The categories are Main

program/subprogram architecture and Remote Procedure Call (RPC)

architectures.

10-02-2024 SUVOBRATA SARKAR 334

PEER – PEER ARCHITECTURE / OBJECT ORIENTED VIEW

Peer to Peer (P2P) are similar to client – server but all processes can be act as clients

and servers.

 It is more flexible but complicated design.

There will be chance to occur dead lock or starvation.

